The goal of diagnosing the coronavirus disease 2019 (COVID-19) from suspected pneumonia cases, that is, recognizing COVID-19 from chest X-ray or computed tomography (CT) images, is to improve diagnostic accuracy, leading to faster intervention. The most important and challenging problem here is to design an effective and robust diagnosis model. To this end, there are three challenges to overcome: (1) The lack of training samples limits the success of existing deep-learning-based methods. (2) Many public COVID-19 data sets contain only a few images without fine-grained labels. (3) Due to the explosive growth of suspected cases, it is and to diagnose not only COVID-19 cases but also the cases of other types of pneumonia that are similar to the symptoms of COVID-19. To address these issues, we propose a novel framework called to address the problem of differentiating COVID-19 from pneumonia cases. During training, our model cannot use any true labels and aims to gain the ability of learning to learn by itself. In particular, we first present a deep diagnosis model based on a relation network to capture and memorize the relation among different images. Second, to enhance the performance of our model, we design a self-knowledge distillation mechanism that distills knowledge within our model itself. Our network is divided into several parts, and the knowledge in the deeper parts is squeezed into the shallow ones. The final results are derived from our model by learning to compare the features of images. Experimental results demonstrate that our approach achieves significantly higher performance than other state-of-the-art methods. Moreover, we construct a new COVID-19 pneumonia data set based on text mining, consisting of 2696 COVID-19 images (347 X-ray + 2349 CT), 10,155 images (9661 X-ray + 494 CT) about other types of pneumonia, and the fine-grained labels of all. Our data set considers not only a bacterial infection or viral infection which causes pneumonia but also a viral infection derived from the influenza virus or coronavirus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242586PMC
http://dx.doi.org/10.1002/int.22449DOI Listing

Publication Analysis

Top Keywords

pneumonia cases
12
covid-19
9
learning learn
8
self-knowledge distillation
8
diagnosis model
8
fine-grained labels
8
types pneumonia
8
covid-19 pneumonia
8
data set
8
viral infection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!