Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel inorganic-organic hybrid complexes Al-X (X represents the dianhydrides PMDA, NTCDA, and PTCDA) are theoretically designed and studied using density functional theory (DFT) and time-dependent DFT. These conjugated dianhydrides containing four acceptor carbonyl groups are commonly used as electron acceptor materials. These compounds possess large binding energies, reflecting the sufficient binding of Al to the dianhydride molecule. The binding nature of the complexes is of charge transfer type, i.e., electrons are transferred from the aluminum cluster to the dianhydride. All of the aimed complexes have large mean polarizability (α) and first hyperpolarizability (β). The β values are explained on the basis of electronic transitions in crucial excited states using the TD-DFT method. Additionally, the hole-electron distribution was analyzed, revealing the nature of electronic excitation. Absorption spectra analysis shows that these complexes have an excellent infrared (IR) transparent region (1000-5000 nm). Therefore, these inorganic-organic hybrid complexes with high stability can be considered as potential candidates for new IR nonlinear optical molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c00527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!