The search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology. Broadly tunable viscoelasticity can be realized by fine-tuning the MNPs' deformability. Being analogous to polymeric systems, the hierarchical structural relaxation dynamics can be observed, and their relaxation time and temperature dependence are dominated by the linker flexibilities. This not only provides microscopic understanding on MNP's unique viscoelasticity but also offers enormous opportunities for modulating their mechanical properties via linker engineering. Our work proves the possibility of applying structural units with particle topologies for the design of soft structural materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00833 | DOI Listing |
Sci Data
January 2025
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54, Košice, Slovak Republic.
The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.
View Article and Find Full Text PDFNat Commun
January 2025
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
From Rehabilitation Research and Development, Palo Alto Veterans Administration Medical Center and the Schools of Medicine and Engineering, Stanford University, Stanford, Calif.
A biologically safe, noninvasive method for visualizing bone and soft tissue relationships has been developed recently. Termed the ultrasonic transmission imaging system, its advantages include visualization of soft tissues in real time while motion is underway. The image can be correlated to standard x-ray films, but since no ionizing radiation is involved, repeated risk-free visualization of extremities for either diagnostic assessment or biomechanical studies is permitted.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:
The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and health care applications. Here, a theoretical framework is presented and proven to be universally accurate and robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers substantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized compression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!