Background: BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis.
Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review. MEDLINE was searched by terms ("BAAT1" and "BRAT1") from inception until June 21, 2022.
Results: Twenty-eight studies, screened out of 49 records, were included for data extraction. The data from fifty patients with mutated BRAT1 were collected. There are 3 high relevant phenotypes, 4 medium relevant phenotypes and 3 low relevant phenotypes. Eye-related abnormal features were most frequently reported: 27 abnormal features were observed. Thirty-nine kinds of pathogenic nucleotide change in BRAT1 were reported. Top three common mutations of BRAT1 were c.638_639insA (16 cases), c.1395G > A (5 cases) and c.294dupA (4 cases). Homozygous mutations in BRAT1 presented a more severe phenotype than those who are compound heterozygotes.
Conclusions: This is the first comprehensive systematic review to present quantitative data about clinical characteristics of BRAT1-related disease, which helps doctors to recognize and diagnose it easier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13760-024-02507-y | DOI Listing |
Acta Neurol Belg
August 2024
Beijing Hong Jian Medical Device Company, Beijing, 100176, China.
Background: BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis.
Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review.
Eur J Hum Genet
September 2023
Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France.
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations.
View Article and Find Full Text PDFNat Commun
August 2022
Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs.
View Article and Find Full Text PDFHum Mutat
January 2022
Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy.
Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging.
View Article and Find Full Text PDFAm J Med Genet A
September 2016
Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.
Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, are associated with a severe phenotype known as rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL; OMIM # 614498), characterized by intractable seizures, hypertonia, autonomic instability, and early death. We expand the phenotypic spectrum of BRAT1 related disorders by reporting on four individuals with various BRAT1 mutations resulting in clinical severity that is either mild or moderate compared to the severe phenotype seen in RMFSL. Representing mild severity are three individuals (Patients 1-3), who are girls (including two sisters, Patients 1-2) between 4 and 10 years old, with subtle dysmorphisms, intellectual disability, ataxia or dyspraxia, and cerebellar atrophy on brain MRI; additionally, Patient 3 has well-controlled epilepsy and microcephaly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!