Globally, antibiotic resistance is a challenging issue in healthcare sector. The emergence of multiple drug-resistant bacteria has forced us to modify existing medicines and or formulate newer medicines that are effective and inexpensive. In this perspective, this study involves the formation of zinc oxide nanoparticles (ZnO NPs) by utilizing the Lawsonia inermis (Li) leaf extract. The prepared L. inermis leaf extract mediated ZnO NPs (Li-ZnO NPs) were bio-physically characterized. The antibacterial and radical scavenging effects of Li-ZnO NPs were evaluated. In addition, ZnO NPs were conjugated with standard antibiotic (ciprofloxacin) and its drug loading efficiency, drug release and antibacterial efficacy were tested and compared with non-drug loaded ZnO NPs. An absorbance peak at 340 nm was noted for Li-ZnO NPs. After conjugation with the drug, two absorbance peaks- one at 242 nm characteristic of ciprofloxacin and the other at 350 nm characteristics of ZnO NPs were observed. The crystallite size was 18.7 nm as determined by XRD. The antibacterial effect was higher on Gram-positive (S. aureus and S. pyogenes) than the Gram-negative pathogens (E. coli and K. pneumoniae). Inhibition of S. aureus and S. pyogenes biofilm at 100 μg mLwere, respectively, 97.5 and 92.6%. HO free radicals was inhibited to 90% compared to the standard ascorbic acid at 100 μg mL. After drug loading, the FTIR spectrum confirmed the existence of ciprofloxacin peaks at 965 cm and Zn-O bond at 492 cm. The drug loading capacity of 15 nm sized ZnO NPs was higher (58, 75, 90 and 95% at 1, 2.5, 5 and 10% drug concentrations, respectively) compared to 20 nm. Similarly, the percentage of drug (ciprofloxacin) released from 15 nm ZnO NPs were increased to 90% at 10% drug-loaded samples, respectively. Also, the antibiotic loaded ZnO NPs had significant antibacterial effects against tested bacteria compared to Li-ZnO NPs and ciprofloxacin alone. This revealed that the antibiotic loaded ZnO NPs offer a sustainable route to treat multi-drug-resistant bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-024-03000-9 | DOI Listing |
Daru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Nanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Industrial and Information Engineering and Economics, University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Materials and Engineering, Ho hai university, Nanjing, 210000, China.
This study explores the potential of DNA hydrogels as a novel approach for diagnosing and treating Oral Squamous Cell Carcinoma (OSCC). In the experiment, DNA hydrogels are synthesized and loaded with Zinc Oxide Nanoparticles (ZnO NPs) and Cisplatin. In vitro experiments evaluated drug delivery efficacy and the effect on cancer cell viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!