Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-β-primeveroside and linalyl-β-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most -form) and corresponding distribution trend in most teas ( up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-β-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-β-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-β-primeveroside but rather /-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c00037 | DOI Listing |
Plant Physiol Biochem
November 2024
Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada. Electronic address:
Food Res Int
December 2024
Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Eurotium cristatum is the primary fungus in Fu brick tea (FBT) and plays a crucial role in its special flavor. This study investigated the effect of inoculation with different E. cristatum strains (i.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China. Electronic address:
A boiled fish simulation system was constructed to explore the deodorization effect of main aroma compounds (MAC) on myofibrillar protein (MP) with main fishy compounds (MFC) during heating. The results showed that the MFC content of boiled fish was reduced by 63.10-78.
View Article and Find Full Text PDFToxicology
December 2024
Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, Kaiserslautern D-67663, Germany. Electronic address:
Foods
October 2024
College of Tea Science, Yunnan Agricultural University, Kunming 650201, China.
To explore the effects of different withering methods on the quality of Congou black tea, this study focused on five different withering methods: natural withering, warm-air withering, sun-natural combined withering, sun withering, and shaking withering. Gas chromatography‒mass spectrometry (GC‒MS), high-performance liquid chromatography (HPLC), and ion-exchange chromatography techniques were used to analyze the nonvolatile and volatile components and composition of the tea. The results revealed significant differences ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!