Methodologies across the dispersion preparation, characterization, and cellular dosimetry of hydrophilic nanoparticles (NPs) have been developed and used extensively in the field of nanotoxicology. However, hydrophobic NPs pose a challenge for dispersion in aqueous culture media using conventional methods that include sonication followed by mixing in the culture medium of interest and cellular dosimetry. In this study, a robust methodology for the preparation of stable dispersions of hydrophobic NPs for cellular studies is developed by introducing continuous energy over time via stirring in the culture medium followed by dispersion characterization and cellular dosimetry. The stirring energy and the presence of proteins in the culture medium result in the formation of a protein corona around the NPs, stabilizing their dispersion, which can be used for in vitro cellular studies. The identification of the optimal stirring time is crucial for achieving dispersion and stability. This is assessed through a comprehensive stability testing protocol employing dynamic light scattering to evaluate the particle size distribution stability and polydispersity. Additionally, the effective density of the NPs is obtained for the stable NP dispersions using the volumetric centrifugation method, while cellular dosimetry calculations are done using available cellular computational modeling, mirroring approaches used for hydrophilic NPs. The robustness of the proposed dispersion approach is showcased using a highly hydrophobic NP model (black carbon NPs) and two culture media, RPMI medium and SABM, that are widely used in cellular studies. The proposed approach for the dispersion of hydrophobic NPs results in stable dispersions in both culture media used here. The NP effective density of 1.03-1.07 g/cm measured here for black carbon NPs is close to the culture media density, resulting in slow deposition on the cells over time. So, the present methodology for dispersion and dosimetry of hydrophobic NPs is essential for the design of dose-response studies and overcoming the challenges imposed by slow particle deposition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013865 | PMC |
http://dx.doi.org/10.3390/nano14070589 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Alzheimers Dement
December 2024
Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.
Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.
Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.
Alzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!