Unlabelled: Extracytoplasmic function (ECF) σ factors selectively upregulate expression of specific genes in bacteria. These σ factors, belonging to the σ family, are much smaller than the primary, housekeeping σ factor with two helical domains that interact with the Pribnow box and the -35 element of the promoter DNA. Structural studies reveal that promoter specificity in a σ factor is determined by the interactions between a loop (L3) and the Pribnow box element. Similarly, the efficiency of transcription initiation is governed by the polypeptide linker between the two promoter-binding domains. Both these polypeptide segments are dynamic and poorly conserved among ECF σ factor homologs. This feature hitherto limited insights from protein-DNA interactions to be correlated with transcription initiation efficiency. Here, we describe an approach to characterize these features that govern the dynamic range of gene expression using chimeric σ. The L3 loop and linker polypeptides in these σ chimeras were replaced by the corresponding segments from 10 annotated and functional ECF σ's. and measurements to determine the effect of these polypeptide replacements provided an experimentally validated σ chimera- gene expression level data set. We illustrate the utility of this chimeric σ library in improving the efficiency of a biosynthetic pathway in . In a two-enzyme step, unaffected by feedback inhibition and substrate concentration, we show an increase in desired product levels by altering the relative intracellular levels of the target enzymes using this library of σ factors. The chimeric σ library thus demonstrates the feasibility of engineering σ factors to achieve bespoke expression levels of target genes for diverse applications in synthetic microbiology.
Importance: The synthesis of organic compounds involves the action of multiple enzymes in a biosynthetic pathway. Incorporating such biosynthetic pathways into microbes often leads to substantial cellular and metabolic stress resulting in low titers of the target compound. This limitation can be offset, in part, by optimizing enzyme efficiency and cellular enzyme concentration. The former involves significant efforts to achieve improvements in catalytic efficiency with the caveat that the metabolic load on a microbial cell imposed by the overexpression of the exogenous enzyme could result in reduced cell fitness. Here, we demonstrate the feasibility of engineered σ factors to modulate gene expression levels without significant genetic engineering. We note that changing the sequence of two flexible polypeptide loops without any changes to the structural scaffold of the transcription initiation factor σ could modulate the expression levels of the target genes. This ability provides a route to improve the efficiency of a biosynthetic pathway without altering the overall genomic makeup. The σ chimera library thus provides an avenue for pre-determined conditional gene expression of specific genes in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107172 | PMC |
http://dx.doi.org/10.1128/aem.00021-24 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:
The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan. Electronic address:
Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!