Vagal tone, pain sensitivity and exercise-induced hypoalgesia: The effect of physical activity level.

Eur J Pain

Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.

Published: October 2024

Background: Vagal activity has analgesic effects that are attributed to exercise-induced hypoalgesia (EIH). High vagal tone and low pain sensitivity are reported in individuals who routinely exercise yet, their association is unclear. Furthermore, it is unknown if the heightened vagal tone following high physical activity predicts and intensifies EIH.

Methods: Fifty-one healthy participants (27 low-moderately physically active; 27 females) underwent a resting-state electrocardiogram followed by heart rate variability analysis. Pain measurements, including pressure (PPT) and heat (HPT) pain thresholds, ratings of tonic heat pain (THP) and conditioned pain modulation (CPM) paradigm, were conducted pre- and post-exercise on a cycle ergometer.

Results: The highly active group demonstrated higher vagal tone compared to the low-moderately active (root mean square of successive differences between R-R intervals: 63.96.92 vs. 34.78 ms, p = 0.018; percentage of successive R-R intervals that exceed 50 ms: 24.41 vs. 11.52%, p = 0.012). Based on repeated-measure ANOVA, the highly active group showed higher PPT at pre-exercise, compared to the low-moderately active group (382 kPa vs. 327 kPa; p = 0.007). Post-exercise, both groups demonstrated EIH, increased HPT (p = 0.013) and decreased THP ratings (p < 0.001). Linear regression revealed that only in the low-moderately active group, higher vagal tone was associated with more efficient pre-exercise CPM and a greater reduction in THP ratings post-exercise (p ≤ 0.01).

Conclusions: Highly active individuals demonstrate greater vagal tone and lower pain sensitivity but no greater EIH. Vagal tone moderates pain inhibition efficiency and EIH only in low-moderately active individuals. These findings suggest that physical activity level moderates the vagal-pain association via the endogenous analgesia system.

Significance: Highly physically active individuals exhibit greater vagal tone and reduced sensitivity to experimental pain, yet they do not benefit more from exercise-induced hypoalgesia (EIH) compared to low-moderately active individuals. Moreover, low-moderately active individuals with greater vagal tone exhibited more efficient endogenous pain inhibition and greater EIH, suggestive of the moderation effect of physical activity level on vagal-pain associations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejp.2275DOI Listing

Publication Analysis

Top Keywords

vagal tone
16
active group
12
pain sensitivity
8
exercise-induced hypoalgesia
8
physical activity
8
highly active
8
compared low-moderately
8
low-moderately active
8
r-r intervals
8
pain
6

Similar Publications

Introduction: Many studies have documented the profound impact that the mother-child relationship has on child sociality and behavior. However, the biological mechanisms that govern the relationship are poorly understood. We developed a mother-child emotional preparation program (MCEP), based on a novel autonomic nervous system learning mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

Heart rate variability parameters indicate altered autonomic tone in subjects with COVID-19.

Sci Rep

December 2024

Krannert Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

COVID-19 is associated with long-term cardiovascular complications. Heart Rate Variability (HRV), a measure of sympathetic (SNS) and parasympathetic (PNS) control, has been shown to predict COVID-19 outcomes and correlate with disease progression but a comprehensive analysis that includes demographic influences has been lacking. The objective of this study was to determine the balance between SNS, PNS and heart rhythm regulation in hospitalized COVID-19 patients and compare it with similar measurements in healthy volunteers and individuals with cardiovascular diseases (CVD), while also investigating the effects of age, Body Mass Index (BMI), gender and race.

View Article and Find Full Text PDF

Acute Effects of Slow-Paced Breathing on Measures of HRV in Hospitalized Patients With Bilateral COVID-19 Pneumonia: A Secondary Analysis of a Randomized Clinical Trial.

Psychosom Med

January 2025

From the Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm (Balint, Gündel, Haase, Kaw-Geppert, Weimer, Jarczok), Ulm, Germany; Center for Mental Health, Privatklinik Meiringen (Balint), Meiringen, Switzerland; Clinic for Internal Medicine III, Division of Infectious Diseases (Grüner), University Hospital Ulm, Ulm, Germany; and Department of Psychological Science (Thayer), University of California, Irvine, Irvine, California.

Objective: Slow-paced breathing (SPB) with prolonged exhalation is assumed to stimulate vagal reflexes, which is represented by increased heart rate variability (HRV) values. However, most trials were conducted in healthy participants. We sought to evaluate the feasibility of SPB in hospitalized patients with confirmed bilateral COVID-19 pneumonia with major respiratory impairment and to investigate if SPB shows acute increasing effects on HRV measures in these severely ill patients with distinctly reduced vagal tone.

View Article and Find Full Text PDF

Physical contact between infants and caregivers is crucial for attachment development. Previous research shows that skin-to-skin contact after birth and frequent baby wearing in the first year predict secure attachment at 12-months. This relationship is thought to be mediated by the activation of infants' parasympathetic nervous system through caregiver touch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!