Background: General practitioners (GPs) work in an ill-defined environment where diagnostic errors are prevalent. Previous research indicates that aggregating independent diagnoses can improve diagnostic accuracy in a range of settings. We examined whether aggregating independent diagnoses can also improve diagnostic accuracy for GP decision making. In addition, we investigated the potential benefit of such an approach in combination with a decision support system (DSS).

Methods: We simulated virtual groups using data sets from 2 previously published studies. In study 1, 260 GPs independently diagnosed 9 patient cases in a vignette-based study. In study 2, 30 GPs independently diagnosed 12 patient actors in a patient-facing study. In both data sets, GPs provided diagnoses in a control condition and/or DSS condition(s). Each GP's diagnosis, confidence rating, and years of experience were entered into a computer simulation. Virtual groups of varying sizes (range: 3-9) were created, and different collective intelligence rules (plurality, confidence, and seniority) were applied to determine each group's final diagnosis. Diagnostic accuracy was used as the performance measure.

Results: Aggregating independent diagnoses by weighing them equally (i.e., the plurality rule) substantially outperformed average individual accuracy, and this effect increased with increasing group size. Selecting diagnoses based on confidence only led to marginal improvements, while selecting based on seniority reduced accuracy. Combining the plurality rule with a DSS further boosted performance.

Discussion: Combining independent diagnoses may substantially improve a GP's diagnostic accuracy and subsequent patient outcomes. This approach did, however, not improve accuracy in all patient cases. Therefore, future work should focus on uncovering the conditions under which collective intelligence is most beneficial in general practice.

Highlights: We examined whether aggregating independent diagnoses of GPs can improve diagnostic accuracy.Using data sets of 2 previously published studies, we composed virtual groups of GPs and combined their independent diagnoses using 3 collective intelligence rules (plurality, confidence, and seniority).Aggregating independent diagnoses by weighing them equally substantially outperformed average individual GP accuracy, and this effect increased with increasing group size.Combining independent diagnoses may substantially improve GP's diagnostic accuracy and subsequent patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102639PMC
http://dx.doi.org/10.1177/0272989X241241001DOI Listing

Publication Analysis

Top Keywords

independent diagnoses
32
diagnostic accuracy
24
collective intelligence
16
aggregating independent
16
diagnoses improve
16
improve diagnostic
12
virtual groups
12
data sets
12
accuracy
10
diagnoses
10

Similar Publications

BACKGROUND This study aimed to analyze the risk factors of central nervous system (CNS) infection caused by reactivation of varicella zoster virus (VZV) and provide reference for the prevention and early diagnosis of VZV-associated CNS infection. MATERIAL AND METHODS A prospective study was conducted on 1030 patients with acute herpes zoster (HZ) admitted to our hospital from January 2021 to June 2023. According to clinical manifestations and auxiliary examinations, they were divided into HZ group of 990 patients and VZV-associated CNS infection group of 40 patients.

View Article and Find Full Text PDF

This study explored the early diagnosis and prognostic value of copeptin in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). 171 patients with chest pain or myocardial ischemia symptoms were enrolled. Patients with NSTE-ACS were further divided into the non-ST-elevation myocardial infarction (NSTEMI) and unstable angina (UA).

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.

View Article and Find Full Text PDF

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!