Recent Progress on Porous Carbons for Carbon Capture.

Langmuir

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

Published: April 2024

High emission of carbon dioxide (CO) has caused CO levels to reach more than 400 ppm in air and led to a serious climate problem. In addition, in confined spaces such as submarines and aircraft, the CO concentration increase in the air caused by human respiration also affects human health. In order to protect the environment and human health, the search for high-performance adsorbents for carbon capture from high and low concentration gas is particularly important. Porous carbon materials, possessing the advantages of low cost and renewability, have set off a boom in the research of porous adsorbents, which have the opportunity to be utilized on a large scale for industrial carbon capture in the future. In this review, we summarize the recent research progress of porous carbons for carbon capture from flue gas and directly from air in the last five years, including activated carbon (AC), heteroatom-modified porous carbon, carbon molecular sieves (CMS), and other porous carbon materials, with a focus on the effects of temperature, water content, and gas flow rate of industrial flue gas on the performance of porous carbon adsorbents. We summarize the preparation strategies of various porous carbons and seek environmental friendly porous carbon materials preparation strategies under the premise of improving the CO adsorption capacity and selectivity of porous carbon adsorbents. Based on the effects of real industrial flue gas on adsorbents, we provide new ideas and evaluation methods for the development and preparation of porous carbon materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03876DOI Listing

Publication Analysis

Top Keywords

porous carbon
28
carbon capture
16
carbon materials
16
carbon
14
porous carbons
12
flue gas
12
porous
10
progress porous
8
carbons carbon
8
capture high
8

Similar Publications

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Utilizing lignin-derived activated carbon in supercapacitors has emerged as a promising approach to alleviating environmental pollution and promoting the high-value utilization of byproducts in the papermaking industry. In this study, activated carbons (LACs) were prepared using a simple one-step KOH activation approach and by employing enzymatic hydrolysis lignin (EHL). The impact of the KOH activation parameters on the microstructure and capacitive performance of the LACs was investigated by varying the KOH/EHL ratio and activation temperature.

View Article and Find Full Text PDF

Recovery of Nd and Dy from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic Assays.

Molecules

December 2024

LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!