Purpose: Magnetic resonance imaging (MRI)-guided radiotherapy enables adaptive treatment plans based on daily anatomical changes and accurate organ visualization. However, the bias field artifact can compromise image quality, affecting diagnostic accuracy and quantitative analyses. This study aims to assess the impact of bias field correction on 0.35 T pelvis MRIs by evaluating clinical anatomy visualization and generative adversarial network (GAN) auto-segmentation performance.

Materials And Methods: 3D simulation MRIs from 60 prostate cancer patients treated on MR-Linac (0.35 T) were collected and preprocessed with the N4ITK algorithm for bias field correction. A 3D GAN architecture was trained, validated, and tested on 40, 10, and 10 patients, respectively, to auto-segment the organs at risk (OARs) rectum and bladder. The GAN was trained and evaluated either with the original or the bias-corrected MRIs. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95) were computed for the segmented volumes of each patient. The Wilcoxon signed-rank test assessed the statistical difference of the metrics within OARs, both with and without bias field correction. Five radiation oncologists blindly scored 22 randomly chosen patients in terms of overall image quality and visibility of boundaries (prostate, rectum, bladder, seminal vesicles) of the original and bias-corrected MRIs. Bennett's score and Fleiss' kappa were used to assess the pairwise interrater agreement and the interrater agreement among all the observers, respectively.

Results: In the test set, the GAN trained and evaluated on original and bias-corrected MRIs showed DSC/HD95 of 0.92/5.63 mm and 0.92/5.91 mm for the bladder and 0.84/10.61 mm and 0.83/9.71 mm for the rectum. No statistical differences in the distribution of the evaluation metrics were found neither for the bladder (DSC: = 0.07; HD95: = 0.35) nor for the rectum (DSC: = 0.32; HD95: = 0.63). From the clinical visual grading assessment, the bias-corrected MRI resulted mostly in either no change or an improvement of the image quality and visualization of the organs' boundaries compared with the original MRI.

Conclusion: The bias field correction did not improve the anatomy visualization from a clinical point of view and the OARs' auto-segmentation outputs generated by the GAN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007142PMC
http://dx.doi.org/10.3389/fonc.2024.1294252DOI Listing

Publication Analysis

Top Keywords

bias field
24
field correction
20
image quality
12
original bias-corrected
12
bias-corrected mris
12
impact bias
8
correction 035
8
generative adversarial
8
oars' auto-segmentation
8
visual grading
8

Similar Publications

Exchange-Biased Fe/FeF Nanocomposites: Unveiling the Structural Insights into Spin-Dependent Tunnel Transport.

ACS Appl Mater Interfaces

December 2024

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.

Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.

View Article and Find Full Text PDF

It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.

View Article and Find Full Text PDF

Bias Tunable SnS/ReSe Tunneling Photodetector with High Responsivity and Fast Response Speed.

Small

December 2024

School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, P. R. China.

2D photodetectors operating in photovoltaic mode exhibit a trade-off between response speed and photoresponsivity. This work presents a phototransistor based on SnS/ReSe heterojunction. Under negative bias, the energy band spike at the heterojunction interface impedes the carrier drifting so that the dark current is as low as 10 A.

View Article and Find Full Text PDF

Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging?

Exp Hematol

December 2024

Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany. Electronic address:

Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues.

View Article and Find Full Text PDF

We performed a systematic review of the ictal semiology of temporo-frontal seizures with the aim to summarize the state-of-the-art anatomo-clinical correlations in the field, and help guide the interpretation of ictal semiology within the framework of presurgical evaluation. We conducted the systematic review and meta-analysis, and reported its results according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. We searched electronic databases (Scopus, PUBMED, Web of Science, and EMBASE) using relevant keywords related to temporal, frontal and sublobar structures, semiology, and electroencephalography/stereoelectroencephalography exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!