Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoplastic pollution poses a significant global concern for public health due to the potential toxicity it induces in the human body through food and water intake. Consequently, the urgent task of removing nanoplastics, especially from water resources, is paramount for enhancing food safety, and developing eco-friendly materials capable of efficiently removing nanoplastics is crucial. In this context, we propose the use of biodegradable anionic seaweed cellulose nanofibers (TEMPO-mediated seaweed cellulose nanofibers, TCNFs) and cationic seaweed cellulose nanofibers (quaternized seaweed cellulose nanofibers, QCNFs) for nanoplastic removal in both single- and copollutant systems. In our experiments under simulated practical conditions, we revealed that TCNFs and QCNFs achieved an average removal efficiency of 98.71% against nanoplastic particles. Moreover, TCNFs and QCNFs exhibited higher adsorption capacities compared to those of existing materials, potentially offering a cost-effective advantage. Toxicity assessments conducted with mammalian cells further confirmed the biosafety of TCNFs and QCNFs. This study contributes to the scientific and theoretical understanding of using edible seaweed as well as offers promising solutions for food safety control in an efficient, cost-effective, and eco-friendly manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c00832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!