Background: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed.
Results: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na to the roots while allowing for more K and Ca accumulation. Notably, despite the increase in the Na concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na; K and Ca translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata.
Conclusion: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K and Ca transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K and Ca to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007891 | PMC |
http://dx.doi.org/10.1186/s12870-024-04911-1 | DOI Listing |
BMC Plant Biol
January 2025
Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China. Electronic address:
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. Licorice and dried ginger decoction (LGD) is traditional Chinese medicine prescription with multiple effects. Glycyrrhetinic acid (GA) is the main bioactive components of LGD, which has been proven to have a relieving effect on various inflammatory diseases.
View Article and Find Full Text PDFPhytother Res
December 2024
Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
Acute lung injury (ALI), a systemic inflammatory response with high morbidity, lacks effective pharmacological therapies. Myeloid differentiation protein-2 (MD2) has emerged as a promising therapeutic target for ALI. Herein, we aimed to evaluate the ability of isoliquiritigenin (ISL), a natural flavonoid found in licorice as a novel MD2 inhibitor, to inhibit lipopolysaccharide (LPS)-induced ALI.
View Article and Find Full Text PDFBMC Genomics
December 2024
State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China.
Background: O-Methyltransferase (OMTs) is a class of conserved multifunctional enzymes that play important roles in plant developmental regulation, hormone signaling, secondary metabolite synthesis and abiotic stress response. The GiOMT gene family has been identified and analyzed in species such as citrus, alfalfa, Populus and grape, but has not been reported in Glycyrrhiza inflata Bat.
Results: In this study, we systematically identified and analyzed the GiOMT gene family of G.
Am J Chin Med
January 2025
Department of Neurology, The First Affiliated, Hospital of Anhui University of Traditional Chinese Medicine, Hefei, P. R. China.
Wilson's disease (WD) is a hereditary condition marked by abnormalities in copper metabolism, which precipitate a spectrum of neurological symptoms and cognitive impairments. Emerging research has highlighted ferroptosis (FPT) as a distinct type of programmed cell death, potentially linked to various cognitive dysfunctions. Nevertheless, the connection between FPT and cognitive impairment in Wilson's disease (WDCI) remains largely enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!