Microstructure control in metal additive manufacturing is highly desirable for superior and bespoke mechanical performance. Engineering the columnar-to-equiaxed transition during rapid solidification in the additive manufacturing process is crucial for its technological advancement. Here, we report a powder-size driven melt pool engineering approach, demonstrating facile and large-scale control in the grain morphology by triggering a counterintuitive response of powder size to the additively manufactured 316 L stainless steel microstructure. We obtain coarse-grained (>100 μm) or near-monocrystalline microstructure using fine powders and near-equiaxed, fine-grained (<10 μm) microstructure using coarse powders. This approach shows resourceful adaptability to directed energy deposition and powder-bed fusion with no added cost, where the particle-size dependent powder-flow preheating effects and powder-bed thermophysical properties drive the microstructural variations. This work presents a pathway for leveraging feedstock particle size distribution towards more controllable, cost-effective, and sustainable metal additive manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009264 | PMC |
http://dx.doi.org/10.1038/s41467-024-47257-w | DOI Listing |
Ann Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Food Chem
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2).
View Article and Find Full Text PDFSci Adv
January 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University Chongqing 400042, China.
Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.
Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!