Chemotaxis in heterogeneous environments: A multi-agent model of decentralized gathering past obstacles.

J Theor Biol

Department of Industrial Engineering, University of Trento, 9 via Sommarive, 38123 Trento, Italy. Electronic address:

Published: June 2024

Chemotaxis, cell migration in response to chemical gradients, is known to promote self-organization of microbiological populations. However, the modeling of chemotaxis in heterogeneous environments is still limited. This study analyzes a decentralized gathering process in environments with physical as well as chemical barriers, using a multi-agent model for Disctyostelium discoideum colonies. Employing a topology-independent metric to quantify the system evolution, we study dynamical features emerging from complex social interactions. The results show that obstacles may hamper the gathering process by altering the flux of chemical signals among amoebas, acting as local topological perturbations. We also find that a minimal set of agent's rules for robust gathering does not require explicit mechanisms for obstacle sensing and avoidance; moreover, random cell movements concur in preventing multiple stable clusters and improve the gathering efficacy. Hence, we speculate that chemotactic cells can avoid obstacles without needing specialized mechanisms: tradeoffs of social interactions and individual fluctuations are sufficient to guarantee the aggregation of the whole colony past numerous obstacles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2024.111820DOI Listing

Publication Analysis

Top Keywords

chemotaxis heterogeneous
8
heterogeneous environments
8
multi-agent model
8
decentralized gathering
8
gathering process
8
social interactions
8
gathering
5
environments multi-agent
4
model decentralized
4
obstacles
4

Similar Publications

Background: Age-related macular degeneration (AMD), is a neurodegenerative ocular disease. This study investigated the role of ferroptosis-related genes and their interaction with immune cell infiltration in AMD.

Methods: We screened differential expression genes (DEGs) of AMD from data sets in Gene Expression Omnibus.

View Article and Find Full Text PDF

Sequential activation of osteogenic microenvironment via composite peptide-modified microfluidic microspheres for promoting bone regeneration.

Biomaterials

May 2025

Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China. Electronic address:

The osteogenic microenvironment (OME) significantly influences bone repair; however, reproducing its dynamic activation and repair processes remains challenging. In this study, we designed injectable porous microspheres modified with composite peptides to investigate cascade alterations in OME and their underlying mechanisms. Poly -lactic acid microfluidic microspheres underwent surface modifications through alkaline hydrolysis treatment, involving heterogeneous grafting of bovine serum albumin nanoparticles with stem cell-homing peptides (BNP@SKP) and BMP-2 mimicking peptides (P24), respectively.

View Article and Find Full Text PDF

Blockade of TREM2 ameliorates pulmonary inflammation and fibrosis by modulating sphingolipid metabolism.

Transl Res

January 2025

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China. Electronic address:

Pulmonary fibrosis is a chronic interstitial lung disease involving systemic inflammation and abnormal collagen deposition. Dysregulations in lipid metabolism, such as macrophage-dependent lipid catabolism, have been recognized as critical factors for the development of pulmonary fibrosis. However, little is known about the signaling pathways involved and the key regulators.

View Article and Find Full Text PDF

Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void.

View Article and Find Full Text PDF

The MRGPRX2-substance P pathway regulates mast cell migration.

iScience

October 2024

Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.

Mast cells (MCs) are tissue-resident immune cells known to degranulate in response to FcεRI crosslinking or MRGPRX2 engagement. MCs are found close to nerves, but the mechanisms that regulate this privileged localization remain unclear. Here, we investigated MRGPRX2 expression patterns and specific activities in MCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!