The STRAT-PARK cohort: A personalized initiative to stratify Parkinson's disease.

Prog Neurobiol

Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway. Electronic address:

Published: May 2024

The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2024.102603DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
disease subtypes
8
strat-park
5
strat-park cohort
4
cohort personalized
4
personalized initiative
4
initiative stratify
4
stratify parkinson's
4
disease
4
disease strat-park
4

Similar Publications

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

Nuclear Alpha-Synuclein in Parkinson's Disease and the Malignant Transformation in Melanoma.

Neurol Res Int

January 2025

Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.

Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.

View Article and Find Full Text PDF

Objectives: Despite being recognized for a long time as a characteristic of Parkinson's disease (PD), pseudobulbar affect (PBA) is still a symptom that is underdiagnosed and undertreated. This study aimed to assess the association between PBA and various mood disturbances, as well as the impact on quality of life in PD patients.

Methods: Sixty-eight patients with PD were enrolled in this study.

View Article and Find Full Text PDF

Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!