Various genetic variants have been found to be associated with the clinical onset of premature ovarian insufficiency (POI). However, when measured in vitro, the functional influence of the variants can be difficult to determine. By whole-exome sequencing (WES) of 93 patients with sporadic POI, we found a missense variant c.623G > A;p.R208H in the EIF4ENIF1 gene. In silico prediction of the variant using different algorithms suggested it might be a damaging variant. We compared the property of EIF4ENIF1 R208H and Q842P, a POI-related mutant that we reported previously, with wildtype (WT) protein using 293FT cells in vitro. Surprisingly, a change in subcellular distribution and granule forming ability (Q842P) and nuclear import capacity (R208H) was not observed, despite domain prediction evidences. Since EIF4ENIF1 was reported to inhibit translation, we employed T&T-seq, a translation-transcription dual-omics sequencing method, to profile gene expression upon overexpression of EIF4ENIF1 WT and mutants. EIF4ENIF1 WT overexpression group exhibited significantly (P < 0.0001) lower translation efficiency (TE) than empty vector or GFP overexpression control group. Surprisingly, EIF4ENIF1 Q842P overexpression failed to repress global translation, showing an overall TE significantly higher than WT group. Overexpression R208H significantly (P < 0.0001) lowered the overall TE, whereas exhibiting a reduced translation inhibitory effect on high-TE genes (TE > 2 in GFP control group). Several fertility-associated genes, such as AMH in Q842P group and SERPINE1 and THBS1 in R208H group, was translationally up-regulated in mutant groups versus WT control, suggesting a potential mechanism of mutated EIF4ENIF1 causing POI via impaired translation repression. It is further proposed that T&T-seq can be a sensitive evaluation tool for the measurement of functional alteration by variants in many other translational regulator genes, not only EIF4ENIF1, helping to eliminate misinterpretation of clinical significance of genetic variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148456 | DOI Listing |
We created the c.1286C>G stop-gain mutation found in a family with primary ovarian insufficiency (POI) at age 30 years. The C57/Bl6 transgenic mouse model contained a floxed exon 10-19 cassette with a conditional knock-in cassette containing the c.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.
Gene
July 2024
Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital. Beijing 100006, China. Electronic address:
Various genetic variants have been found to be associated with the clinical onset of premature ovarian insufficiency (POI). However, when measured in vitro, the functional influence of the variants can be difficult to determine. By whole-exome sequencing (WES) of 93 patients with sporadic POI, we found a missense variant c.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2024
Department of Human Genetics, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
Background: Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology.
View Article and Find Full Text PDFEMBO Rep
January 2024
Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!