Landfill gases can have numerous detrimental effects on the global climate and urban ecological environment. The protective efficacy of the final cover layer against landfill gases, following exposure to periodic natural meteorological changes during long-term service, remains unclear. This study conducted centrifuge tests and gas permeability tests on compacted loess. The experiments examined the impact and relationship of wetting-drying cycles and dry density on the soil water characteristic curve (SWCC) and gas permeability of compacted loess. Research findings reveal that during the dehumidification process of compacted loess, the gas permeability increases non-linearly, varying the gas permeability of soil with different densities to different extents under wetting-drying cycles. Two models were introduced to describe the impact of wetting-drying cycles on gas permeability of loess with various dry densities, where fitting parameters increased with the number of wetting-drying cycles. Sensitivity analysis of the parameters in the Parker-Van Genuchten-Mualem (P-VG-M) model suggests that parameter γ's accuracy should be ensured in practical applications. Finally, from a microstructural perspective, wetting-drying cycles cause dispersed clay and other binding materials coalesce to fill minuscule pores, leading to an increase in the effective pores responsible for the gas permeability of the soil. These research results offer valuable guidance for designing water retention and gas permeability in compacted loess cover layers under wetting-drying cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118895DOI Listing

Publication Analysis

Top Keywords

gas permeability
32
wetting-drying cycles
28
compacted loess
20
permeability compacted
12
water retention
8
gas
8
permeability
8
landfill gases
8
permeability soil
8
wetting-drying
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!