Parkinson's disease is predominantly caused by dopaminergic neuron loss in the substantia nigra pars compacta and the accumulation of alpha-synuclein protein. Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, malfunctions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuroinflammation, are involved in the neurodegeneration process of Parkinson's disease, the precise mechanism by which all of these factors are triggered remains unknown. Typically, neurotoxic compounds such as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl 4-phenyl pyridinium (mpp), paraquat, and maneb are used to Preclinical models of Parkinson's disease Ferulic acid is often referred to by its scientific name, 4-hydroxy-3-methoxycinnamic acid (C10H10O4), and is found naturally in cereals, fruits, vegetables, and bee products. This substance exhibits neuroprotective effects against Parkinson's disease because of its intriguing potential, which includes anti-inflammatory and antioxidant qualities. This review goes into additional detail about Parkinson's disease and the neuroprotective properties of ferulic acid that may help prevent the condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2024.102299 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFOptom Vis Sci
January 2025
School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia.
Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.
Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.
Am J Ther
January 2025
James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.
Mol Neurobiol
January 2025
Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!