Long-term use of etomidate disrupts the intestinal homeostasis and nervous system in mice.

Toxicology

School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China. Electronic address:

Published: May 2024

Etomidate (ETO) is used as an anesthetic in surgery, but it is being abused in some populations. The damage caused by long-term intake of ETO to intestinal and brain functions is not yet clear, and it remains to be determined whether the drug affects the central nervous system through the gut-brain axis. This study aimed to investigate the neurotoxic and gastrointestinal effects of ETO at doses of 1 mg/kg and 3 mg/kg in mice over 14 consecutive days. The results showed that long-term injection of ETO led to drug resistance in mice, affecting their innate preference for darkness and possibly inducing dependence on ETO. The levels of 5-hydroxytryptamine in the brain, serum, and colon decreased by 37%, 51%, and 42% respectively, while the levels of γ-aminobutyric acid reduced by 38%, 52%, and 41% respectively. H&E staining revealed that ETO reduced goblet cells in the colon and damaged the intestinal barrier. The expression of tight junction-related genes Claudin4 and ZO-1 was downregulated. The intestinal flora changed, the abundance of Akkermansia and Lactobacillus decreased by 33% and 14%, respectively, while Klebsiella increased by 18%. TUNEL results showed that high-dose ETO increased apoptotic cells in the brain. The expression of Claudin1 in the brain was downregulated. Untargeted metabolomics analysis of the colon and brain indicated that ETO caused abnormalities in glycerophospholipid metabolism. Abnormal lipid metabolism might lead to the production or accumulation of lipotoxic metabolites, causing central nervous system diseases. ETO induced changes in the intestinal flora and metabolism, further affecting the central nervous system through the gut-brain axis. The study unveiled the detrimental effects on the brain and gastrointestinal system resulting from long-term intake of ETO, which holds significant implications for comprehending the adverse impact of ETO abuse on human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2024.153802DOI Listing

Publication Analysis

Top Keywords

nervous system
16
central nervous
12
eto
11
long-term intake
8
intake eto
8
system gut-brain
8
gut-brain axis
8
axis study
8
intestinal flora
8
brain
6

Similar Publications

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

Long-term epidemiological trends in (primary) pediatric central nervous system tumors: a 25-year cohort analysis in Western Mexico.

Childs Nerv Syst

January 2025

Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.

Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.

Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.

Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.

View Article and Find Full Text PDF

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!