A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of microplastic type, size, and composition in atmospheric and foliage samples in an urban scenario. | LitMetric

AI Article Synopsis

  • The increase in plastic production and improper waste disposal has sparked concerns about environmental issues related to microplastics.
  • The study involved collecting foliage samples from two plant species to analyze and identify microplastics using a quantum cascade laser IR spectrophotometer.
  • Results indicate that leaves can effectively serve as passive samplers for monitoring microplastics in the environment, showing similar types found in atmospheric deposition.

Article Abstract

The rising trend of plastic production in last years and the inadequate disposal of related waste has raised concerns regarding microplastic-related environmental issues. Microplastic particles disperse by means of transport and deposition processes to different ecosystems and enter food chains. In this paper, atmospheric deposition and foliage samples of two species (i.e., Hedera helix and Photinia glabra) were collected and analysed for the quantity and identity of microplastics (MPs). A preliminary methodology to treat foliage samples and subsequently identify MPs using a quantum cascade laser IR spectrophotometer is presented. The treatment of airborne samples involved filtration, mild digestion, concentration, and transfer onto reflective slides whereas that for foliage involved washing, concentration, and transference of putative MPs onto reflective slides. Fibers and fragments were differentiated according to their physical features (size, width, height, etc.) and calculating derived characteristics (namely, circularity and solidity). The preliminary results obtained suggest a good agreement between atmospheric-deposited and foliage-retained MPs, showing the capability of leaves to act as passive samplers for environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123911DOI Listing

Publication Analysis

Top Keywords

foliage samples
12
reflective slides
8
comparison microplastic
4
microplastic type
4
type size
4
size composition
4
composition atmospheric
4
foliage
4
atmospheric foliage
4
samples
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!