Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune microenvironment of HCC is of great significance to probe the molecular mechanisms.
Methods: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. Special cell subpopulations were determined by the expression levels of marker genes. Differential expression analysis was conducted. The activity of each subpopulation was determined based on the highly expressed genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. A single-cell regulatory network inference and clustering analysis was also performed to determine the transcription factor regulatory networks in the CTLA4+ T cell subpopulations.
Results: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, which were activated, was present in CTLA4+ T cells.
Conclusion: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042964 | PMC |
http://dx.doi.org/10.18632/aging.205723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!