Resonance of fatty acid metabolism and immune infiltration in anti-PD-1 monotherapy for breast cancer.

Transl Oncol

Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Precision Medicine Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, China. Electronic address:

Published: June 2024

The interaction between tumor fatty acid metabolism and immune microenvironment is a novel topic in oncology research, and the relationship of lipid-derived factors with immune editing in tumor is unclear. The breast cancer samples from the TCGA database were used as the training set, and samples from GSE42568 were employed as the validation set for constructing a model to identify a signature associated with fatty acid metabolism through Lasso Cox regression. And the changes in immune related signatures and risk score before and after anti-PD-1 monotherapy were caught by the differential analysis in GSE225078. A 14-gene prognostic risk scoring model identifying by fatty acid metabolism relevant signature was conducted, and the high risk group had shorter overall survival and progression free survival than low risk group. Many metabolism-related pathways were enriched in the high risk group, and many immune-related pathways were enriched in low risk group. The crucial differentially expressed genes between the high/low risk groups, CYP4F8 and CD52, were found to be strongly associated with SUCLA2 and ACOT4 of 14-gene model, and strongly related to immune infiltration. Immune related signatures, fatty acid metabolism-risk score and the expression level of ALDH1A1 (in 14-gene-model) changed after anti-PD-1 monotherapy. And the mice model results also showed anti-PD-1 mAb could significantly reduce the expression level of ALDH1A1 (p < 0.01). These results brought up the crosstalk between immune components and fatty acid metabolism in breast cancer microenvironment, which provided a new possibility of targeting fatty acid metabolism for combination therapy in breast cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024218PMC
http://dx.doi.org/10.1016/j.tranon.2024.101960DOI Listing

Publication Analysis

Top Keywords

fatty acid
28
acid metabolism
24
breast cancer
16
risk group
16
anti-pd-1 monotherapy
12
metabolism immune
8
immune infiltration
8
immune signatures
8
high risk
8
low risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!