Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Emotion-cause pair extraction (ECPE) is a challenging task that aims to automatically identify pairs of emotions and their causes from documents. The difficulty of ECPE lies in distinguishing valid emotion-cause pairs from many irrelevant ones. Most previous methods have primarily focused on utilizing multi-task learning to extract semantic information solely from documents without explicitly encoding the relations between clauses. We propose a new approach that incorporates textual entailment paradigm aiming to infer the entailment relationship between the original document as the premise and the clauses or pairs described as the hypothesis. Our approach designs label-view hypothesis templates to improve ECPE by filtering out irrelevant emotion and cause clauses. Furthermore, we formulate candidate emotion-cause pairs as hypothesis statements, and define explicit multi-view symmetric templates to capture the emotion-cause relation semantics. The text entailment recognition for ECPE is finally implemented by fusing multi-view semantic information using a simplified capsule network. Our proposed model achieves state-of-the-art performance on ECPE compared to previous baselines. More importantly, this work demonstrates a novel effective way of applying the textual entailment paradigm to ECPE or clause-level causal discovery by designing multi-view hypothesis inference and information fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!