The pursuit of efficient and sustainable hydrogen production through water splitting has led to intensive research in the field of electrocatalysis. However, the impediment posed by sluggish reaction kinetics has served as a significant barrier. This challenge has inspired the development of electrocatalysts characterized by high activity, abundance in earth's resources, and long-term stability. In addressing this obstacle, it is imperative to meticulously fine-tune the structure, morphology, and electronic state of electrocatalysts. By systematically manipulating these key parameters, the full potential of electrocatalysts can unleash, enhancing their catalytic activity and overall performance. Hence in this study, a novel heterostructure is designed, showcasing core-shell architectures achieved by covering WN-WC nanowire arrays with tri-metallic Nickel-Cobalt-Iron layered triple hydroxide nanosheets on carbon felt support (NiCoFe-LTH/WN-WC/CF). By integrating the different virtue such as binder free electrode design, synergistic effect between different components, core-shell structural advantages, high exposed active sites, high electrical conductivity and heterostructure design, NiCoFe-LTH/WN-WC/CF demonstrates striking catalytic performances under alkaline conditions. The substantiation of all the mentioned advantages has been validated through electrochemical data in this study. According to these results NiCoFe-LTH/WN-WC/CF achieves a current density of 10 mA cm needs overpotential values of 101 mV for HER and 206 mV for OER, respectively. Moreover, as a bi-functional electrocatalyst for overall water splitting, a two-electrode device needs a voltage of 1.543 V and 1.569 V to reach a current density of 10 mA cm for alkaline water and alkaline seawater electrolysis, respectively. Briefly, this research with attempting to combination of different factors try to present a promising stride towards advancing bi-functional catalytic activity with tailored architectures for practical green hydrogen production via electrochemical water splitting process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.040DOI Listing

Publication Analysis

Top Keywords

water splitting
12
bi-functional electrocatalyst
8
hydrogen production
8
catalytic activity
8
current density
8
density 10 ma cm
8
designing core-shell
4
core-shell heterostructure
4
heterostructure arrays
4
arrays based
4

Similar Publications

The development and generation of affordable and highly efficient energy, particularly hydrogen, are one of the best approaches to address the challenges posed by the depletion of non-renewable energy sources. Hydrogen energy, as a green and ecosystem-friendly source with zero carbon emission, can be generated through various methods, including water splitting (HER/OER) either photo- or electrocatalytic reactions. To implement these reactions effectively in practical applications, it is highly desirable to develop extremely efficient and cost-effective catalytic materials that are comparable to contemporary catalysts.

View Article and Find Full Text PDF

Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.

View Article and Find Full Text PDF

Objective: The primary objective of these studies was to evaluate the potential of a serum containing Macrocystis pyrifera ferment (MPF-Serum) to both strengthen the barrier of intact skin and enhance barrier recovery after a non-ablative laser procedure or glycolic acid chemical peel.

Methods: Two whole-face clinical trials and three split-face, randomized, controlled clinical trials were conducted in women aged 31 to 65 years. The effect of MPF-Serum on barrier integrity and strength was assessed by transepidermal water loss measurement before and after controlled tape-stripping experiments and in-clinic 70% glycolic acid peel and non-ablative laser procedures.

View Article and Find Full Text PDF

Implementing a hydrogen economy on an industrial scale poses challenges, particularly in developing cost-effective and stable catalysts for water electrolysis. This study explores the catalytic potential of selenium nanoparticles (Se-NPs) synthesized via a simple chemical bath deposition method for electrochemical and photoelectrochemical (PEC) water splitting. The successful fabrication of Se-NPs on fluorine-doped tin oxide (FTO) electrodes has been confirmed using a wide range of analytical tools like X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Mesoporous Fe2O3-TiO2 Integrated with Plasmonic Ag Nanoparticles for Enhanced Solar H2 Production.

Chem Asian J

January 2025

CSIR-National Chemical Laboratory: CSIR National Chemical Laboratory, Catalysis and Inorganic Chemistry Division, Dr. Homi Bhabha Road, 411 008, Pune, INDIA.

Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies.  TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!