A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forest management positively reshapes the phyllosphere bacterial community and improves community stability. | LitMetric

Forest management positively reshapes the phyllosphere bacterial community and improves community stability.

Environ Int

Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

Published: April 2024

AI Article Synopsis

  • Forest management positively impacts Qinghai spruce growth and resilience post-drought, particularly concerning the associated phyllosphere microbiome.
  • The study found that managed forests exhibited increased bacterial community diversity and stability, while community complexity decreased.
  • Changes in community assembly processes under forest management suggested a stronger deterministic influence over stochastic factors, ultimately aiding in better tree growth and microbiome health.

Article Abstract

Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the β-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108611DOI Listing

Publication Analysis

Top Keywords

forest management
28
phyllosphere bacterial
16
bacterial community
12
phyllosphere microbiome
12
forest
9
community stability
8
management
8
qinghai spruce
8
keystone species
8
assembly processes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!