Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Acute Kidney Injury (AKI) is a common and severe complication in patients diagnosed with sepsis. It is associated with higher mortality rates, prolonged hospital stays, increased utilization of medical resources, and financial burden on patients' families. This study aimed to establish and validate predictive models using machine learning algorithms to accurately predict the occurrence of AKI in patients diagnosed with sepsis.
Methods: This retrospective study utilized real observational data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. It included patients aged 18 to 90 years diagnosed with sepsis who were admitted to the ICU for the first time and had hospital stays exceeding 48 hours. Predictive models, employing various machine learning algorithms including Light Gradient Boosting Machine (LightGBM), EXtreme Gradient Boosting (XGBoost), Random Forest (RF), Decision Tree (DT), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Logistic Regression (LR), were developed. The dataset was randomly divided into training and test sets at a ratio of 4:1.
Results: A total of 10,575 sepsis patients were included in the analysis, of whom 8,575 (81.1%) developed AKI during hospitalization. A selection of 47 variables was utilized for model construction. The models derived from LightGBM, XGBoost, RF, DT, ANN, SVM, and LR achieved AUCs of 0.801, 0.773, 0.772, 0.737, 0.720, 0.765, and 0.776, respectively. Among these models, LightGBM demonstrated the most superior predictive performance.
Conclusions: These machine learning models offer valuable predictive capabilities for identifying AKI in patients diagnosed with sepsis. The LightGBM model, with its superior predictive capability, could aid clinicians in early identification of high-risk patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008834 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301014 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!