Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transit providers have used social media (e.g., Twitter) as a powerful platform to shape public perception and provide essential information, especially during times of disruption and disaster. This work examines how transit agencies used Twitter during the COVID-19 pandemic to communicate with riders and how the content and general activity influence rider interaction and Twitter handle popularity. We analyzed 654,345 tweets generated by the top 40 transit agencies in the US, based on Vehicles Operated in Annual Maximum Service (VOM), from January 2020 to August 2021. We developed an analysis framework, using advanced machine learning and natural language processing models, to understand how agencies' tweeting patterns are associated with rider interaction outcomes during the pandemic. From the transit agency perspective, we find smaller agencies tend to generate a higher percentage of COVID-related tweets and some agencies are more repetitive than their peers. Six topics (i.e., face covering, essential service appreciation, free resources, social distancing, cleaning, and service updates) were identified in the COVID-related tweets. From the followers' interaction perspective, most agencies gained followers after the start of the pandemic (i.e., March 2020). The percentage of follower gains is positively correlated with the percentage of COVID-related tweets, tweets replying to followers, and tweets using outlinks. The average like counts per COVID-related tweet is positively correlated with the percentage of COVID-related tweets and negatively correlated with the percentage of tweets discussing social distancing and agency repetitiveness. This work can inform transportation planners and transit agencies on how to use Twitter to effectively communicate with riders to improve public perception of health and safety as it relates to transit ridership during delays and long-term disruptions such as those created by the COVID-19 public health crisis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659705 | PMC |
http://dx.doi.org/10.1177/23998083221135609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!