Background: Infections caused by soil-transmitted helminths (STHs) are the most prevalent neglected tropical diseases and result in a major disease burden in low- and middle-income countries, especially in school-aged children. Improved diagnostic methods, especially for light intensity infections, are needed for efficient, control and elimination of STHs as a public health problem, as well as STH management. Image-based artificial intelligence (AI) has shown promise for STH detection in digitized stool samples. However, the diagnostic accuracy of AI-based analysis of entire microscope slides, so called whole-slide images (WSI), has previously not been evaluated on a sample-level in primary healthcare settings in STH endemic countries.

Methodology/principal Findings: Stool samples (n = 1,335) were collected during 2020 from children attending primary schools in Kwale County, Kenya, prepared according to the Kato-Katz method at a local primary healthcare laboratory and digitized with a portable whole-slide microscopy scanner and uploaded via mobile networks to a cloud environment. The digital samples of adequate quality (n = 1,180) were split into a training (n = 388) and test set (n = 792) and a deep-learning system (DLS) developed for detection of STHs. The DLS findings were compared with expert manual microscopy and additional visual assessment of the digital samples in slides with discordant results between the methods. Manual microscopy detected 15 (1.9%) Ascaris lumbricoides, 172 (21.7%) Tricuris trichiura and 140 (17.7%) hookworm (Ancylostoma duodenale or Necator americanus) infections in the test set. Importantly, more than 90% of all STH positive cases represented light intensity infections. With manual microscopy as the reference standard, the sensitivity of the DLS as the index test for detection of A. lumbricoides, T. trichiura and hookworm was 80%, 92% and 76%, respectively. The corresponding specificity was 98%, 90% and 95%. Notably, in 79 samples (10%) classified as negative by manual microscopy for a specific species, STH eggs were detected by the DLS and confirmed correct by visual inspection of the digital samples.

Conclusions/significance: Analysis of digitally scanned stool samples with the DLS provided high diagnostic accuracy for detection of STHs. Importantly, a substantial number of light intensity infections were missed by manual microscopy but detected by the DLS. Thus, analysis of WSIs with image-based AI may provide a future tool for improved detection of STHs in a primary healthcare setting, which in turn could facilitate monitoring and evaluation of control programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008773PMC
http://dx.doi.org/10.1371/journal.pntd.0012041DOI Listing

Publication Analysis

Top Keywords

manual microscopy
20
light intensity
12
intensity infections
12
stool samples
12
primary healthcare
12
detection sths
12
artificial intelligence
8
diagnostic accuracy
8
digital samples
8
test set
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!