Industrial land is currently the main carrier and important source of global carbon emissions, and as the world's largest developing country, China's large-scale and diversified industrial land supply has made it the world's largest carbon emitter. Therefore, researching the impact of different supply methods of industrial land on carbon emissions and its impact paths in China can help provide a reference for other countries to reduce carbon emissions from the perspective of urban industrial land management, which is of great significance for effectively promoting global carbon reduction. Based on this, this paper analyses the impact of different supply methods of industrial land on carbon emissions and its urban heterogeneity using the SYS-GMM and chain-mediated effects models for 285 cities in China from 2008 to 2020. The study found that, in general, the impact of different industrial land transfer modes on carbon emission has hysteresis and persistence. Agreement and listing transfer with government intervention can significantly exacerbate carbon emissions, while more market-based bidding and auction transfer can dampen carbon emissions. In terms of intermediary effects, the transfer of industrial land by agreement and listing will inhibit the rationalization and advancement of industrial structure, thus aggravating carbon emissions. The transfer of industrial land by bidding and auction will create barriers to entry and a crowding-out effect, promote the rationalization of industrial structure and the transformation and upgrading of industrial structure and moderate carbon emissions. In terms of city heterogeneity, there is urban heterogeneity in the impact of industrial land transfer on carbon emissions in cities with different economic types. Bidding and auction transfer for industrial land in both economically developed and less developed cities can promote carbon pollution. While the more developed urban economy makes the intermediary effect of industrial structure not significant. In the future, it is necessary to strictly control the scale of industrial land supply; the whole process supervision mechanism of industrial land allocation and differentiated industrial land supply strategies will provide useful experience for many developing countries in allocating industrial land to mitigate carbon emissions, generating effective contributions to global carbon emission reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33217-wDOI Listing

Publication Analysis

Top Keywords

industrial land
60
carbon emissions
40
industrial
20
industrial structure
20
carbon
16
land
14
land transfer
12
global carbon
12
land supply
12
bidding auction
12

Similar Publications

Sustainability concerns have increased consumer demand for non-animal-derived proteins and the search for novel, alternative protein sources. The nutritional sustainability of the food system without compromising the nutrient quality, composition, digestibility and consumption is pivotal. As with farmed livestock, it is imperative to ensure the well-being and food security of companion animals and to develop sustainable and affordable pet foods.

View Article and Find Full Text PDF

Human activities have significantly altered coastal ecosystems worldwide. The phenomenon of shifting baselines syndrome (SBS) complicates our understanding of these changes, masking the true scale of human impacts. This study investigates the long-term ecological effects of anthropogenic activities on New Zealand's coastal ecosystems over 800 years using fish otolith microchemical profiling and dynamic time warping across an entire stock unit.

View Article and Find Full Text PDF

A comparative life cycle analysis of Sol-Char and anaerobic digestion sanitation systems.

Sci Total Environ

January 2025

Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands. Electronic address:

In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!