DNA Damage in Bat Blood Leukocytes Using a Chromatin Dispersion Test (CDT): Biomarker of Environmental Genotoxicity.

Bull Environ Contam Toxicol

Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México.

Published: April 2024

Environmental pollutants produce adverse effects on organisms and ecosystems. Biomonitoring and biomarkers offer a reasonable approach to make these assessments. Induced genetic changes can be using as a biomarker in organisms that react to a given compound in the ecosystem. Monitoring environmental genotoxicity necessitates the choice of model animals known as "sentinels or biological monitors" and the suitability of validated tests for DNA damage evaluation. We aimed to estimate the DNA damage produced by thermal stress in the leukocytes of the Mexican free-tailed bat (Tadarida brasiliensis). The DNA damage in bat leukocytes exposed to different temperatures (35 °C, 45 °C, and 55 °C) was evaluated by the adapted chromatin dispersion test (CDT) and the results were confirmed by the alkaline comet test. The CDT permitted a clear representation of leukocytes with fragmented DNA and of nonfragmented DNA. In addition, we detected nuclear anomalies in relation to cell death cellular swelling, nuclear fragmentation, and chromatin lysis. The alkaline comet assay revealed that the halos of diffuse chromatin include fragmented DNA. The assay of the method employing the CDT is well established, precise, and cost-effective for the routine quantitative analysis of DNA damage on the effect of the leukocytes of bats exposed to thermal stress. This could also apply as a sensitive screening tool for the evaluation of genotoxicity in environmental protection programs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-024-03885-yDOI Listing

Publication Analysis

Top Keywords

dna damage
20
test cdt
12
dna
8
damage bat
8
chromatin dispersion
8
dispersion test
8
environmental genotoxicity
8
genotoxicity environmental
8
thermal stress
8
alkaline comet
8

Similar Publications

Background And Hypothesis: Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD).

Methods: In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio.

View Article and Find Full Text PDF

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!