Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Common clinical rhinitis is characterized by different types of cases and class imbalance. Its prediction belongs to multiple output classification. Low recognition rate and poor generalization performance often occur for minority class. Therefore, we propose a novel integrated classification model, ARF-OOBEE, which transforms the multi-output classification to multi-label classification and multi-class classification. The multi-label classifier automatically adjusts the number and depth of integrated forest learners according to the imbalance ratio of single class label in a subset. It can effectively reduce the impact of class imbalance on classification and improve prediction performance of both majority or minority class concurrently. Also, we build a multi-class classification based on out-of-bag Extra-Tree to accomplish finer classification for the predicted labels. In addition, we calculate the feature importance for rhinitis on the grounds of the purity of nodes in decision-making tree inside Random Forest and study the correlation between rhinitis features. We conduct 12 folds cross-validation experiments on 461 cases of clinical rhinitis. The outcomes show that the evaluation indicators of ARF-OOBEE, such as Sensitivity, Specificity, Accuracy, F1-Score, AUC, and G-Mean are 74.9%,86.5%,92.0%,78.3%,95.3%, and 79.9%, respectively. In comparison to the other methods, ARF-OOBEE has better evaluation indicator and is more effective for the early clinical diagnosis of rhinitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2024.2339461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!