The use of formalin to preserve raw food items such as fish, meat, vegetables . is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an02038j | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany.
We report the resolution of a long-standing puzzle in molecular spectroscopy: the origin of the shoulder in the room temperature solution absorption spectrum of crystal violet (CV) - an archetypal cationic triphenylmethane dye. This was achieved by comparing experimental and theoretical results for CV in solution at room temperature and as an isolated cation in gas-phase at 5 K. The two lowest energy electronically excited states involved in the visible region absorption are degenerate and coupled a Jahn-Teller (JT) mechanism involving phenyl torsions, making CV particularly sensitive to environmental perturbations.
View Article and Find Full Text PDFChemistry
January 2025
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
Triphenylmethyl-based compounds such as rhodamines and fluoresceine representing an old and well-known class of triphenylmethane dyes, are widely used in fluorescent labeling of bioimaging. Inspired by ultralong room temperature phosphorescence of triphenylphosphine derivatives, herein we report a methoxy substituted triarylmethanol ((4-methoxyphenyl)diphenylmethanol, LJW-1) exhibits ultralong room temperature phosphorescence (RTP) under ambient condition with afterglows of about 7 seconds. Its multiple C-H ⋅ ⋅ ⋅ π intermolecular interactions, C-H ⋅ ⋅ ⋅ O intermolecular interactions, hydrogen bond and π-π interactions are beneficial for forming rigid environment in the aggregated state which is evidently an important factor in the appearance of excellent RTP.
View Article and Find Full Text PDFCell Biochem Funct
September 2024
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
Molecules
September 2024
Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy.
This research focuses on analyzing wool samples dyed with synthetic dyes from the early 20th century. A methodology to identify and distinguish wool fibers dyed with azo, triphenylmethane, and xanthene dyes, which are no longer in use, using the ATR-FTIR spectra, is presented. Firstly, the dataset was subjected to PCA, which revealed the similarities and differences among the samples, illustrating a distribution pattern based on dye classes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!