Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004893 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29140 | DOI Listing |
Discov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.
View Article and Find Full Text PDFRes Child Adolesc Psychopathol
January 2025
Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain.
The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2).
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFPlant Physiol
January 2025
The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!