A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-invasive glucose prediction and classification using NIR technology with machine learning. | LitMetric

Non-invasive glucose prediction and classification using NIR technology with machine learning.

Heliyon

School of Electronics Engineering, VIT-AP University, Amaravti, Guntur, 522241, Andhra Pradesh, India.

Published: April 2024

In this paper, a dual wavelength short near-infrared system is described for the detection of glucose levels. The system aims to improve the accuracy of blood glucose detection in a cost-effective and non-invasive way. The accuracy of the method is evaluated using real-time samples collected with the reference finger prick glucose device. A feed forward neural network (FFNN) regression method is employed to predict glucose levels based on the input data obtained from NIR technology. The system calculates glucose evaluation metrics and performs Surveillance error grid (SEG) analysis. The coefficient of determination and mean absolute error are observed 0.99 and 2.49 mg/dl, respectively. Additionally, the system determines the root mean square error (RMSE) as 3.02 mg/dl. It also shows that the mean absolute percentage error (MAPE) is 1.94% and mean squared error (MSE) is 9.16 for FFNN. The SEG analysis shows that the glucose values measured by the system fall within the clinically acceptable range when compared to the reference method. Finally, the system uses the multi-class classification method of the multilayer perceptron (MLP) and K-nearest neighbors (KNN) classifier to classify glucose levels with an accuracy of 99%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004754PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28720DOI Listing

Publication Analysis

Top Keywords

glucose levels
12
nir technology
8
seg analysis
8
glucose
7
system
6
error
5
non-invasive glucose
4
glucose prediction
4
prediction classification
4
classification nir
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!