Platelet-rich plasma (PRP) is one of the most popular biomaterials in regenerative medicine. However, the difficulties encountered in its preservation, and the requirement for on-demand preparation severely limit its application. In addition, its rapid degradation in the wound microenvironment makes the sustained release of growth factors impossible and finally reduces the therapeutic effect on chronic wounds. Here, a multifunctional dressing based on triple-layered core-shell fibers for loading and enduring preservation of PRP was developed using a one-step coaxial bioprinting technique combined with freeze-drying. The platelets were effectively dispersed and immobilized in the core layer of the fiber, leading to a sustained release of growth factors from the PRP. The rate of release can be controlled by adjusting the triple-layered core-shell structure. Simultaneously, the triple-layered core-shell structure can reduce the deactivation of PRP during freezing and storage. The experimental findings suggest that PRP exhibits sustained activity, facilitating the process of wound healing even after a storage period of 180 days. Furthermore, the protective mechanism of PRP by the triple-layered core-shell fiber was investigated, and the conditions for freeze-drying and storage were optimized, further enhancing the long-term storability of PRP. As a result, the multifunctional core-shell fiber dressings developed in this study offer a novel approach for sustained growth factor release and the enduring preservation of active PRP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004556 | PMC |
http://dx.doi.org/10.1093/rb/rbae034 | DOI Listing |
J Colloid Interface Sci
February 2025
Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address:
Hypothesis: Generating multi-layer cargo using conventional methods is challenging. We hypothesize that incorporating a Y-junction compound droplet generator to encase a target core inside a second liquid can circumvent the kinetic energy dependence of the impact-driven liquid-liquid encapsulation technique, enabling minimally restrictive multi-layer encapsulation.
Experiments: Stable wrapping is obtained by impinging a compound droplet (generated using Y-junction) on an interfacial layer of another shell-forming liquid floating on a host liquid bath, leading to double-layered encapsulation.
Regen Biomater
March 2024
Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China.
Platelet-rich plasma (PRP) is one of the most popular biomaterials in regenerative medicine. However, the difficulties encountered in its preservation, and the requirement for on-demand preparation severely limit its application. In addition, its rapid degradation in the wound microenvironment makes the sustained release of growth factors impossible and finally reduces the therapeutic effect on chronic wounds.
View Article and Find Full Text PDFInt J Biol Macromol
February 2024
Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt. Electronic address:
Rheumatoid arthritis (RA), an autoimmune disease impacting the joints, significantly diminishes the quality of life for patients. Conventional treatments predominantly rely on oral or injectable formulations, underscoring the crucial need for an effective topical remedy. The present study reports a novel triple-layered transdermal platform for efficient RA treatment.
View Article and Find Full Text PDFBiomed Mater
November 2023
Chemical Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Despite technological advancements in bone tissue engineering, it is still a challenge to fabricate a scaffold with high bioactivity as well as high mechanical strength that can promote osteogenesis as well as bear load. Here we developed a 3D printed gel-polymer multi-layered hybrid scaffold. The innermost layer is porous gel-based framework made of gelatin/carboxymethyl-chitin/nano-hydroxyapatite and is cryogenically 3D printed.
View Article and Find Full Text PDFSmall
January 2024
College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816, China.
Core-shell metal-organic frameworks (MOF@MOF) are promising materials with sophisticated structures that cannot only enhance the properties of MOFs but also endow them with new functions. The growth of isotopic lcore-shell MOFs is mostly limited to inconvenient stepwise seeding strategies with strict requirements, and by far one-pot synthesis is still of great challenge due to the interference of different components. Through two pairs of isoreticular MOFs, it reveals that the structural incompatibility is a prerequisite for the formation of MOFs@MOFs by one-pot synthesis, as illustrated by PMOF-3@HHU-9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!