Agronomy research traditionally relies on small, controlled trial plots, which may not accurately represent the complexities and variabilities found in larger, real-world settings. To address this gap, we introduce a Bayesian methodology for the analysis of yield monitor data, systematically collected across extensive agricultural landscapes during the 2020/21 and 2021/22 growing seasons. Utilizing advanced yield monitoring equipment, our method provides a detailed examination of the effects of green manure on wheat yields in a real-world context. The results from this comprehensive analysis reveal significant insights into the impact of green manure application on wheat production, demonstrating enhanced yield outcomes across varied landscapes. This evidence suggests that the Bayesian approach to analyzing yield monitor data can offer more precise and contextually relevant information than traditional experimental designs. This research underscores the value of integrating large-scale data analysis techniques in agronomy, moving beyond small-scale trials to offer a broader, more accurate perspective on agricultural practices. The adoption of such methodologies promises to refine farming strategies and policies, ultimately leading to more effective and sustainable agricultural outcomes. The inclusion of a Python script in the appendix illustrates our analytical process, providing a tangible resource for replicating and extending this research within the agronomic community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004894 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1323124 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.
View Article and Find Full Text PDFBMC Genomics
December 2024
Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia.
Background: Lablab is one of the conventionally grown multi-purpose crops that originated in Africa. It is an annual or short-lived perennial forage legume which has versatile uses (as a vegetable and dry seeds, as food or feed, or as green manure) but is yet to receive adequate research attention and hence remains underexploited. To develop new and highly productive lablab varieties, using genomics-assisted selection, the present study aimed to identify quantitative trait loci associated with agronomically important traits in lablab and to assess the stability of these traits across two different agro-ecologies in Ethiopia.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:
Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!