A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advancing multimodal medical image fusion: an adaptive image decomposition approach based on multilevel Guided filtering. | LitMetric

Advancing multimodal medical image fusion: an adaptive image decomposition approach based on multilevel Guided filtering.

R Soc Open Sci

Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.

Published: April 2024

AI Article Synopsis

  • * This article presents a new fast method using multilevel Guided edge-preserving filtering (MLGEPF) to break down images into small-, large-scale, and background components, which are then fused using specialized strategies.
  • * Testing on 40 pairs of brain images showed that the method improved visual contrast and received positive feedback from observers, along with strong objective performance metrics indicating its effectiveness.

Article Abstract

With the rapid development of medical imaging methods, multimodal medical image fusion techniques have caught the interest of researchers. The aim is to preserve information from diverse sensors using various models to generate a single informative image. The main challenge is to derive a trade-off between the spatial and spectral qualities of the resulting fused image and the computing efficiency. This article proposes a fast and reliable method for medical image fusion depending on multilevel Guided edge-preserving filtering (MLGEPF) decomposition rule. First, each multimodal medical image was divided into three sublayer categories using an MLGEPF decomposition scheme: small-scale component, large-scale component and background component. Secondly, two fusion strategies-pulse-coupled neural network based on the structure tensor and maximum based-are applied to combine the three types of layers, based on the layers' various properties. The three different types of fused sublayers are combined to create the fused image at the end. A total of 40 pairs of brain images from four separate categories of medical conditions were tested in experiments. The pair of images includes various case studies including magnetic resonance imaging (MRI) , TITc, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). We included qualitative analysis to demonstrate that the visual contrast between the structure and the surrounding tissue is increased in our proposed method. To further enhance the visual comparison, we asked a group of observers to compare our method's outputs with other methods and score them. Overall, our proposed fusion scheme increased the visual contrast and received positive subjective review. Moreover, objective assessment indicators for each category of medical conditions are also included. Our method achieves a high evaluation outcome on feature mutual information (FMI), the sum of correlation of differences (SCD), Qabf and Qy indexes. This implies that our fusion algorithm has better performance in information preservation and efficient structural and visual transferring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004680PMC
http://dx.doi.org/10.1098/rsos.231762DOI Listing

Publication Analysis

Top Keywords

medical image
16
multimodal medical
12
image fusion
12
image
8
multilevel guided
8
fused image
8
mlgepf decomposition
8
three types
8
medical conditions
8
visual contrast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!