The facet joint contributes to lumbar spine stability as it supports the weight of body along with the intervertebral discs. However, most studies on the causes of degenerative lumbar diseases focus on the intervertebral discs and often overlook the facet joints. This study aimed to investigate the impact of facet joint degeneration on the degenerative changes and diseases of the lumbar spine. A finite element model of the lumbar spine (L1-S1) was fabricated and validated to study the biomechanical characteristics of the facet joints. To simulate degeneration of the facet joint, the model was divided into four grades based on the number of degenerative segments (L4-L5 or L4-S1) and the contact condition between the facet joint surfaces. Finite element analysis was performed on four spine motions: flexion, extension, lateral bending, and axial torsion, by applying a pure moment to the upper surface of L1. Important parameters that could be used to confirm the effect of facet joint degeneration on the lumbar spine were calculated, including the range of motion (ROM) of the lumbar segments, maximum von Mises stress on the intervertebral discs, and reaction force at the facet joint. Facet joint degeneration affected the biomechanical characteristics of the lumbar spine depending on the movements of the spine. When analyzed by dividing it into degenerative onset and onset-adjacent segments, lumbar ROM and the maximum von Mises stress of the intervertebral discs decreased as the degree of degeneration increased in the degenerative onset segments. The reaction force at the facet joint decreased with flexion and increased with lateral bending and axial torsion. In contrast, lumbar ROM of the onset-adjacent segments remained almost unchanged despite severe degeneration of the facet joint, and the maximum von Mises stress of the intervertebral discs increased with flexion and extension but decreased with lateral bending and axial torsion. Additionally, the facet joint reaction force increased with extension, lateral bending, and axial rotation. This analysis, which combined the ROM of the lumbar segment, maximum von Mises stress on the intervertebral disc, and facet joint reaction force, confirmed the biomechanical changes in the lumbar spine due to the degeneration of isolated facet joints under the load of spinal motion. In the degenerative onset segment, spinal instability decreased, whereas in the onset-adjacent segment, a greater load was applied than in the intact state. When conducting biomechanical studies on the lumbar spine, considering facet joint degeneration is important since it can lead to degenerative spinal diseases, including adjacent segment diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005061PMC
http://dx.doi.org/10.3389/fbioe.2024.1294658DOI Listing

Publication Analysis

Top Keywords

facet joint
48
lumbar spine
28
intervertebral discs
20
facet
16
facet joints
16
joint degeneration
16
lateral bending
16
bending axial
16
maximum von
16
von mises
16

Similar Publications

[Chronic back pain-pharmacological and nonpharmacological treatment approaches].

Inn Med (Heidelb)

January 2025

Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastisch-Ästhetische Chirurgie, Universitätsklinikum Köln (AöR), Kerpener Straße 62, 50937, Köln, Deutschland.

Chronic back pain is a global health problem with significant impacts on physical and mental health, work ability, and quality of life. Back pain has an increased risk of becoming chronic, especially in patients with other chronic conditions. Treatment primarily focuses on nonpharmacological approaches.

View Article and Find Full Text PDF

Background And Objective: A safe working trajectory is mandatory for spinal pathologies, especially in the midline, anterior to the spinal cord. For thoracic cerebrospinal fluid (CSF) leaks, we developed a minimally invasive keyhole fenestration. This study investigates the necessary bone removal for sufficient exposure of different leak types particularly regarding weight-bearing structures.

View Article and Find Full Text PDF

Background: Axial spondyloarthritis (SpA) leads to structural bone lesions in every part of the vertebral column. These lesions are only partially visualized on conventional radiographs, omitting posterior parts of the vertebral column and the thoracic spine, that may nevertheless contribute to impaired spinal mobility and function in patients with axial SpA.

Methods: In this prospective and blinded investigation, we assessed the distribution of structural spinal lesions using magnetic resonance imaging (MRI) of the whole spine in 55 patients with axial SpA classified according to the Assessment in Spondyloarthritis International Society (ASAS) criteria.

View Article and Find Full Text PDF

Background And Objectives: Vertebral artery injury (VAI) because of traumatic subaxial cervical spine injury is a rare but potentially devastating condition as it could lead to stroke. The aim of this study was to examine the incidence, risk factors, outcomes, and radiographic predictors of VAI in patients surgically treated for subaxial cervical spine injuries at a tertiary care trauma center.

Methods: This is a retrospective population-based cohort study, including all patients surgically treated for traumatic subaxial cervical spine injuries at the study center between 2006 and 2018.

View Article and Find Full Text PDF

Background: Physicians worldwide face the challenging task of improving patient satisfaction by reducing pain in injured patients. Currently, available therapeutic approaches provide only short-term relief of symptoms without addressing long-term satisfaction. This has led to exploring regenerative treatment options that can deliver better outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!