The physiological mechanism of bone tissue regeneration is intricately organized and involves several cell types, intracellular, and extracellular molecular signaling networks. To overcome the drawbacks of autografts and allografts, a number of synthetically produced scaffolds have been manufactured by integrating ceramics, polymers, and their hybrid-composites. Considering the fact that natural bone is composed primarily of collagen and hydroxyapatite, ceramic-polymer composite materials seem to be the most viable alternative to bone implants. Here, in this experimental study, copolymer PVDF-TrFE has been amalgamated with HA ceramics to produce composite scaffolds as bone implants. In order to fabricate PVDF-TrFE-HA (polyvinylidene fluoride-trifluoroethylene-hydroxyapatite) composite scaffolds, solvent casting-particulate leaching technique was devised. Two scaffold specimens were produced, with different PVDF-TrFE and HA molar ratios (70:30 and 50:50), and then electrically polarized to observe the subsequent polarization impact on the tissue growth and the suppression of bacterial cell proliferation. Both the specimens underwent characterization to analyze their biocompatibility and bactericidal activities. The bacterial culture of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria on the composites was studied to understand the antibacterial characteristics. Moreover, MG63 cells cultured on these as-formed composites provided information about osteogenesis. Improved osteogenesis and antibacterial efficacy were observed on both the composites. However, the composite with 70 wt% PVDF-TrFE and 30 wt% HA showed a higher bactericidal effect as well as osteogenesis. It was found that PVDF-TrFE-HA-based biomaterials have the potential for bone tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37720 | DOI Listing |
Heliyon
January 2025
Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.
View Article and Find Full Text PDFNano Lett
January 2025
University of Washington, Physics Department, Seattle, Washington 98105, United States.
The charge state of a quantum point defect in a solid-state host strongly determines its optical and spin characteristics. Consequently, techniques for controlling the charge state are required to realize technologies for quantum networking and sensing. In this work, we demonstrate the use of deep-ultraviolet (DUV) radiation to dynamically neutralize nitrogen- (NV) and silicon-vacancy (SiV) centers.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
Two-dimensional ferroelectric materials can generate a bulk photovoltaic effect, making them highly promising for self-powered photodetectors. However, their practical application is limited by a weak photoresponse due to a weak transition strength and wide band gap. In this study, we construct a van der Waals heterojunction using NbOI, which has significant in-plane polarization, with a highly absorbing MoSe layer.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt.
This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Electric and Computer, Malek Ashtar University of Technology, Tehran, Iran.
In this paper, a multilayer monopulse antenna at Ku-Band with high efficiency, high power handling capability, high gain, 45° linear polarization and low sidelobe is presented. A new slot antenna is proposed as a radiating element based on a cavity-backed slot-coupled patch antenna. Using an enclosed cavity structure reduces coupling between antenna elements, thus increasing the antenna efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!