AI Article Synopsis

  • N-Nitroso dimethylamine (NDMA) is a harmful impurity found in ranitidine products, with the potential to form during storage due to the drug's chemical structure, prompting the FDA to recommend antioxidants as a solution.
  • A sensitive liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed for detecting NDMA, achieving high sensitivity and precise quantification of NDMA levels in ranitidine samples.
  • The study confirmed that antioxidants effectively reduce NDMA formation during nitrosation of ranitidine, with ascorbic acid being the most effective, significantly lowering NDMA levels by nearly 97%.

Article Abstract

Rationale: N-Nitroso dimethylamine (NDMA) is a mutagenic impurity detected in several ranitidine products. The amino functional group of ranitidine is a risk factor for classical nitrosation-induced NDMA formation in ranitidine drug products during storage conditions. The United States Food and Drug Administration (US FDA) recommended the use of antioxidants to control NDMA in drug products. Considering the need for sensitive analytics, a liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed and validated to detect NDMA in this pilot study to demonstrate the antioxidants as inhibitors of nitrosation reactions.

Methods: The method, utilizing an EC-C18 column and tuned to atmospheric pressure chemical ionization/selected ion monitoring (APCI/SIM) mode, separated NDMA (m/z: 75.0553; tR: 3.71 min) and ranitidine (m/z: 315.1485; tR: 8.61 min). APCI mode exhibited four times higher sensitivity to NDMA than electrospray ionization (ESI) mode. Classical nitrosation of the dimethyl amino group of ranitidine was studied with sodium nitrite in solid pellets. Antioxidants (alpha-tocopherol, ascorbic acid, and trolox) were evaluated as NDMA attenuators in ranitidine pellets under vulnerable storage conditions. The developed method quantified NDMA levels in samples, extracted with methanol through vortex shaking for 45 min.

Results: The method achieved a limit of detection (LOD) and limit of quantitation (LOQ) of 0.01 and 0.05 ng/mL, respectively, with linearity within 1-5000 ng/mL (R: 0.9995). It demonstrated good intra-day and inter-day precision (% RSD [relative standard deviation]: <2) and accuracy (96.83%-101.72%). Nitrosation of ranitidine induced by nitrite was significant (p < 0.001; R = 0.9579) at various sodium nitrite levels. All antioxidants efficiently attenuated NDMA formation during ranitidine nitrosation. Ascorbic acid exhibited the highest NDMA attenuation (96.98%), followed by trolox (90.58%). This study recommends 1% ascorbic acid and trolox as potent NDMA attenuators in ranitidine drug products.

Conclusions: This study compared the effectiveness of antioxidants as NDMA attenuators in ranitidine under storage conditions susceptible to NDMA generation. The study concluded that ascorbic acid and trolox are potent inhibitors of NDMA formation and nitrosation attenuators in ranitidine drug products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9747DOI Listing

Publication Analysis

Top Keywords

drug products
12
ndma
9
ranitidine drug
8
antioxidants inhibitors
8
classical nitrosation
8
group ranitidine
8
storage conditions
8
ranitidine
7
method
5
development validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!