Some synthetic dyes are fraudulently added into spices to appeal visually to consumers. Food regulations in several countries, including the United States, Australia, Japan and the European Union, strictly prohibit the use of unauthorised synthetic dyes in food. Nevertheless, illegal practices persist, where spices contaminated with potentially carcinogenic dyes have been documented, posing potential health risks to consumers. In the present study, 14 synthetic dyes were investigated through liquid chromatography/tandem mass spectrometry in 252 commercially available spices in the Singapore market. In 18 out of these (7.1%) at least 1 illegal dye was detected at concentrations ranging from 0.010 to 114 mg/kg. Besides potential health risks, presence of these adulterants also reflects the economic motivations behind their fraudulent use. Findings in the present study further emphasise the need for increased public awareness, stricter enforcement, and continuous monitoring of illegal synthetic dyes in spices to ensure Singapore's food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19393210.2024.2326431 | DOI Listing |
Heliyon
January 2025
Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.
Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:
Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland.
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA.
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry and Pharmacology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.
Given the natural origins of flavylium derivatives, their chemical modifications, and their large potential uses in food, medicine, or green chemistry, the present review is a comprehensive study of flavylium-derived compounds. Several topics such as the green extraction and isolation techniques of flavylium derivatives including their chemical modifications and various characterization tools such as NMR, HPLC, and mass spectrometry are discussed in the review. Furthermore, the use of these derivatives in medicine, food, and materials science is presented, highlighting their relevance and the need for further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!