A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stability analysis of rainfall-induced landslide considering air resistance delay effect and lateral seepage. | LitMetric

Accumulation landslides are prone to occur during the continuous infiltration of heavy rainfall, which seriously threatens the lives and property safety of local residents. In this paper, based on the Green-Ampt (GA) infiltration model, a new slope rainfall infiltration function is derived by combining the effect of air resistance and lateral seepage of saturated zone. Considering that when the soil layer continues to infiltrate after the saturation zone is formed, the air involvement cannot be discharged in time, which delays the infiltration process. Therefore, the influence of air resistance factor in soil pores is added. According to the infiltration characteristics of finite long slope, the lateral seepage of saturated zone is introduced, which makes up for the deficiency that GA model is only applicable to infinite long slope. Finally, based on the seepage characteristics of the previous analysis, the overall shear strength criterion is used to evaluate the stability of the slope. The results show that the safety factor decreases slowly with the increase of size and is inversely correlated with the slope angle and initial moisture content. The time of infiltration at the same depth increases with the increase of size and slope angle, and is inversely correlated with the initial moisture content, but is less affected by rainfall intensity. By comparing with the results of experimental data and other methods, the results of the proposed method are more consistent with the experimental results than other methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006952PMC
http://dx.doi.org/10.1038/s41598-024-59121-4DOI Listing

Publication Analysis

Top Keywords

air resistance
12
lateral seepage
12
seepage saturated
8
saturated zone
8
long slope
8
increase size
8
inversely correlated
8
slope angle
8
initial moisture
8
moisture content
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!