Calculation method of spherically expanding flame propagation radius to consider ignition electrode effects.

Sci Rep

Key Laboratory of Vehicle Measurement, Control and Safety of Sichuan Province, Xihua University, Chengdu, 610039, China.

Published: April 2024

Ignition electrodes have an immense impact on the accurate measurement of the flame propagation spherical radius. In this study, a flame-radius calculation method is designed. The method is able to eliminate effects due to the ignition electrodes. The adaptability and optimization effects of the proposed method are analyzed. The results show that the ratio of the angle is affected by the ignition electrodes under the Han II method. There are three obvious divisions include a high-value area, a sharp-variation area, and a mild-variation area. The ratio of the angle affected by the ignition electrodes is only applicable to the mild-variation region when the flame presents respective convex and concave distributions. For these distributions, the increment rate of the mean radius is 0.4-0.85% and 0.42-3.19%. The reduced rate of the standard deviation of the radius extraction value is 11.91-22.1% and 5.13-17.99%, and the reduced rate of the radius extraction value range is 20.32-39.51% and 0.32-8.09%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006940PMC
http://dx.doi.org/10.1038/s41598-024-58940-9DOI Listing

Publication Analysis

Top Keywords

ignition electrodes
16
calculation method
8
flame propagation
8
effects ignition
8
ratio angle
8
angle ignition
8
rate radius
8
reduced rate
8
radius extraction
8
radius
5

Similar Publications

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Water treatment methods based on cold plasma discharge in cavitating liquid have been actively developing in recent years. However, some conditions, such as the conductivity of the medium, can limit the possibility of plasma ignition. The authors proposed a new method for activating an electric discharge in a cavitating liquid environment based on the use of an external corona discharge electrode in the plasma reactor.

View Article and Find Full Text PDF

To overcome the material processing challenges induced by high levels of heat input in wire arc additive manufacturing (WAAM), an innovative WAAM method using pulsed arc plasma (PAP-WAAM), was developed by the authors in the previous study. In this method, the PAP generated by the pulsed voltage was used as the heat source. The pulse interval can be defined as the time interval between adjacent pulse voltages, which determines the ignition time and frequency of the arc plasma, thus influencing the forming process.

View Article and Find Full Text PDF

The reduction of greenhouse gas emissions and the effort of carbon neutrality require the improvement of spark-ignition engines in terms of efficiency and capability to operate on renewable fuels. The electrode wear of spark plugs, used for ignition of novel fuels and lean mixtures, emerges as a significant challenge in this transition. Understanding the physical mechanism and influence of spark operation parameters of the wear process is thus important.

View Article and Find Full Text PDF

The capacitive energy storage mechanism offers quick charging, an extended life span, and, far, higher power density compared to batteries. This study presents a simple and efficient lithium (Li)-doping approach for enhancing electrochemical energy storage properties of perovskite-type bismuth ferrite (BiFeO) BiLiFeO (BLFs), where = 0, 0.05, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!