Longitudinal markers of cerebral amyloid angiopathy and related inflammation in rTg-DI rats.

Sci Rep

Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA.

Published: April 2024

Cerebral amyloid angiopathy (CAA) is a prevalent vascular dementia and common comorbidity of Alzheimer's disease (AD). While it is known that vascular fibrillar amyloid β (Aβ) deposits leads to vascular deterioration and can drive parenchymal CAA related inflammation (CAA-ri), underlying mechanisms of CAA pathology remain poorly understood. Here, we conducted brain regional proteomic analysis of early and late disease stages in the rTg-DI CAA rat model to gain molecular insight to mechanisms of CAA/CAA-ri progression and identify potential brain protein markers of CAA/CAA-ri. Longitudinal brain regional proteomic analysis revealed increased differentially expressed proteins (DEP) including ANXA3, HTRA1, APOE, CST3, and CLU, shared between the cortex, hippocampus, and thalamus, at both stages of disease in rTg-DI rats. Subsequent pathway analysis indicated pathway enrichment and predicted activation of TGF-β1, which was confirmed by immunolabeling and ELISA. Further, we identified numerous CAA related DEPs associate with astrocytes (HSPB1 and MLC1) and microglia (ANXA3, SPARC, TGF-β1) not previously associated with astrocytes or microglia in other AD models, possibly indicating that they are specific to CAA-ri. Thus, the data presented here identify several potential brain protein biomarkers of CAA/CAA-ri while providing novel molecular and mechanistic insight to mechanisms of CAA and CAA-ri pathological progression and glial cell mediated responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006668PMC
http://dx.doi.org/10.1038/s41598-024-59013-7DOI Listing

Publication Analysis

Top Keywords

cerebral amyloid
8
amyloid angiopathy
8
rtg-di rats
8
mechanisms caa
8
brain regional
8
regional proteomic
8
proteomic analysis
8
insight mechanisms
8
identify potential
8
potential brain
8

Similar Publications

Point of view: Challenges in implementation of new immunotherapies for Alzheimer's disease.

J Prev Alzheimers Dis

January 2025

Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, 171 64 Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Stockholm, Sweden.

The advancement of disease-modifying treatments (DMTs) for Alzheimer's disease (AD), along with the approval of three amyloid-targeting therapies in the US and several other countries, represents a significant development in the treatment landscape, offering new hope for addressing this once untreatable chronic progressive disease. However, significant challenges persist that could impede the successful integration of this class of drugs into clinical practice. These challenges include determining patient eligibility, appropriate use of diagnostic tools and genetic testing in patient care pathways, effective detection and monitoring of side effects, and improving the healthcare system's readiness by engaging both primary care and dementia specialists.

View Article and Find Full Text PDF

Liver function and Alzheimer's brain pathologies: A longitudinal study: Liver and Alzheimer's pathologies.

J Prev Alzheimers Dis

January 2025

Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea. Electronic address:

Importance: The neuropathological links underlying the association between changes in liver function and AD have not yet been clearly elucidated.

Objective: We aimed to examine the relationship between liver function markers and longitudinal changes in Alzheimer's disease (AD) core pathologies.

Design: Data from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a longitudinal cohort study initiated in 2014, were utilized.

View Article and Find Full Text PDF

A 24-30 Centiloid (CL) threshold was collectively considered by a group of global dementia experts as a practical and implementable cut-off for anti-amyloid therapy intervention, in Alzheimer's disease patients who have been diagnosed at the mild cognitive impairment or mild dementia stage of their disease. Though additional validation is needed, knowledge of this threshold would be valuable to those involved in diagnosing and treating patients in the new AD care pathways, as well as entry into clinical trials. Therapy monitoring to determine future treatment response and assess amyloid clearance can be accomplished with amyloid PET with some technical details still to be elucidated.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!