AI Article Synopsis

  • * TNBC cells of the mesenchymal stem-like subtype utilize cystine to activate the NRF2 transcription factor, enhancing their defense against oxidative stress through a mechanism independent of glutathione production.
  • * Four upregulated genes linked to this process serve as negative prognostic markers for TNBC, suggesting that targeting the cystine/NRF2/OSGIN1 pathway could lead to new treatment options for this challenging cancer subtype.

Article Abstract

Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136656PMC
http://dx.doi.org/10.1038/s41388-024-03025-0DOI Listing

Publication Analysis

Top Keywords

nrf2 activation
12
tnbc cells
12
oxidative stress
12
triple-negative breast
8
breast cancer
8
stress response
8
expression exogenous
8
nrf2
5
tnbc
5
activation cysteine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!