The accurate perception of multiple flight parameters, such as the angle of attack, angle of sideslip, and airflow velocity, is essential for the flight control of micro air vehicles, which conventionally rely on arrays of pressure or airflow velocity sensors. Here, we present the estimation of multiple flight parameters using a single flexible calorimetric flow sensor featuring a sophisticated structural design with a suspended array of highly sensitive vanadium oxide thermistors. The proposed sensor achieves an unprecedented velocity resolution of 0.11 mm·s and angular resolution of 0.1°. By attaching the sensor to a wing model, the angles of attack and slip were estimated simultaneously. The triaxial flight velocities and wing vibrations can also be estimated by sensing the relative airflow velocity due to its high sensitivity and fast response. Overall, the proposed sensor has many promising applications in weak airflow sensing and flight control of micro air vehicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006672PMC
http://dx.doi.org/10.1038/s41467-024-47284-7DOI Listing

Publication Analysis

Top Keywords

multiple flight
12
airflow velocity
12
flexible calorimetric
8
calorimetric flow
8
flow sensor
8
flight parameters
8
flight control
8
control micro
8
micro air
8
air vehicles
8

Similar Publications

Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth's bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive.

View Article and Find Full Text PDF

Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited.

View Article and Find Full Text PDF

This study investigates the effectiveness of high-throughput phenotyping (HTP) using RGB images from unmanned aerial vehicles (UAVs) to assess vegetation indices (VIs) in different soybean pure lines. The VIs were accessed at various stages of crop development and correlated with agronomic performance traits. The field research was conducted in the experimental area of the Mato Grosso do Sul Foundation, Brazil, with 60 soybean pure lines.

View Article and Find Full Text PDF

Recent methane surges reveal heightened emissions from tropical inundated areas.

Nat Commun

December 2024

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.5 and 17.

View Article and Find Full Text PDF

Bloodstream Infection Combined with Thoracic Infection Caused by : A Case Report and Review of the Literature.

Infect Drug Resist

December 2024

Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.

Objective: is usually found in urogenital tract infections and is associated with several extra-genitourinary infections, including septic arthritis, bacteremia, and meningitis. Here, we report a rare case of induced bloodstream infection with thoracic inflammation in a surgical patient.

Methods: A 56-year-old male who underwent surgery for multiple pelvic and rib fractures developed fever, pleural effusion, and wound exudation despite receiving prophylactic anti-infection treatment with cefotiam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!