Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375197PMC
http://dx.doi.org/10.3343/alm.2024.0069DOI Listing

Publication Analysis

Top Keywords

pacbio third-generation
4
third-generation sequencing
4
sequencing reveals
4
reveals gene
4
gene promoter
4
promoter mutation
4
mutation c-35_-18del
4
c-35_-18del leading
4
leading weakened
4
weakened antigen
4

Similar Publications

Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.

Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.

Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.

View Article and Find Full Text PDF

Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.

View Article and Find Full Text PDF

Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology.

Microorganisms

December 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China.

Traditional methods for studying microbial communities have been limited due to difficulties in culturing and sequencing all microbial species. Recent advances in third-generation sequencing technologies, particularly PacBio's high-fidelity (HiFi) sequencing, have significantly advanced metagenomics by providing accurate long-read sequences. This review explores the role of HiFi sequencing in overcoming the limitations of previous sequencing methods, including high error rates and fragmented assemblies.

View Article and Find Full Text PDF

Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.

View Article and Find Full Text PDF

Complementary insights into gut viral genomes: a comparative benchmark of short- and long-read metagenomes using diverse assemblers and binners.

Microbiome

December 2024

Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Background: Metagenome-assembled viral genomes have significantly advanced the discovery and characterization of the human gut virome. However, we lack a comparative assessment of assembly tools on the efficacy of viral genome identification, particularly across next-generation sequencing (NGS) and third-generation sequencing (TGS) data.

Results: We evaluated the efficiency of NGS, TGS, and hybrid assemblers for viral genome discovery using 95 viral-like particle (VLP)-enriched fecal samples sequenced on both Illumina and PacBio platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!