Background: Epidemiological data on the corona pandemic collected in the public health sector in Germany have been less useful in estimating vaccine effectiveness and clinical outcomes compared to other countries.

Methods: In this retrospective observational study, we examined the completeness of selected own data collected during the pandemic. Information on the important parameters of hospitalization, vaccination status and risk factors for severe course and death over different periods were considered and evaluated descriptively. The data are discussed in the extended context of required digital strategies in Germany.

Results: From January 1, 2022 to June 30, 2022, we found 126,920 administrative procedures related to COVID-19. With regard to the data on hospitalization, in 19,749 cases, it was stated "No", in 1,990 cases "Yes" and in 105,181 cases (83+%) "Not collected" or "Not ascertainable". Concerning vaccinations, only a small proportion of procedures contained information on the type of vaccine (11.1+%), number of vaccinations (4.4+%) and date of the last vaccination (2.1+%). The completeness of data on chronic conditions/risk factors in COVID-19-related deaths decreased over four consecutive periods between 2020 and 2022 as case numbers increased.

Conclusion: Future strategies taking into account meaningfulness and completeness of data must comprise modern technical solutions with digital data collection on infections without putting the principle of data protection at risk.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2234-6894DOI Listing

Publication Analysis

Top Keywords

data
9
data collection
8
completeness data
8
[analysis data
4
data quality/completeness
4
quality/completeness covid-19
4
cases
4
covid-19 cases
4
cases digital
4
digital integrated
4

Similar Publications

Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.

View Article and Find Full Text PDF

In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.

View Article and Find Full Text PDF

Background: To compare plateletcount (PC), mean platelet volume (MPV), and platelet distribution width (PDW)between women with preeclampsia (PE) and normotensive pregnant women, andevaluate their effectiveness as predictors of PE.

Research Design Andmethods: This cross-sectionalstudy at Nishtar Hospital, Multan, included 141 women: 74 normotensive and 67preeclamptic. Data was collected using an automated hematology analyzer andanalyzed with SPSS version 26 and ROC curves.

View Article and Find Full Text PDF

Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).

Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!